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PREFACE

This report concludes the Queueing Methodology study that has been
directed toward the development of dynamic models for evaluating anti-
submarine warfare (ASW) system effectiveness, The project was sponsored
by the Director, Naval Analysis Programs, of the Office of Naval Research
(ONR)., Mr, R, H, Dickman was the ONR Project Scientific Officer, The
research effort was performed jointly by Stanford Research Institute's
(SRI) Naval Warfare Research Center (NWRC), Mr, L, J, Low, Director,
and the Information Sciences Laboratory, Mr. D. R. Brown, Director.

Mr. W, H. Frye of NWRC was the project leader for that part of the study

leading to this report.

The first report on the project, 'Dynamic Analysis of ASW Effective-
* e
ness~-~A Queueing Approach," was published in March 1972,% This report
now concludes the project with the presentation of the research results

that complement the results from the first report.
The following SRI personnel contributed to this final report:

William H, Frye (NWRC, project leader)

Andrew J. Korsak (Information Sciences Laboratory).

In addition, computer programming assistance was provided by D. L.

Alderman and D, G. Ayers of NWRC,

%
References are listed at the end of this report.
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1 INTRODUCTION AND SUMMARY

A, Research Objectives

The objective of the Queueing Methodology study was to develop new
methodology for evaluating ASW system effectiveness in dynamic contexts.
It should be specifically noted that the study was not directed toward
the solution of any particular real-world ASW problem, Rather, the prob-
lem addressed is how to adequately analyze and measure ASW system effec-

tiveness in complex, dynamic, tactical situations,

To understand the approach taken in this research effort, some back-
ground in the nature of naval effectiveness modeling is needed, Models,
modeling efforts, and effectiveness analysis can be divided into two
categories: analytical or opera£iona1. Roughly speaking, analytical
models are usually constructed on the assumption that the model struc-
ture and paramgters are known or will somehow be estimated by the time
the model is used on a real problem, Parameter estimation, and the struc-
turing of the model so that its parameters can be estimated, is usually
of secondary concern in such modeling efforts., 1In contrast, operational
models focus on the data available (or to become available), and the

parameters are estimated from these data.

Most ASW effectiveness modeling efforts are analytical, and in many
respects analytical models are more highly developed than operational
models, War games and Monte Carlo simulation, which are common forms of
analytical models, have advanced considerably in many technical respects
over the past decade or so, In particular, complex dynamic tacticél
situations are now routinely modeled by analytical means. Whatever the

advantages of these advanced analytical models, they suffer from many




inherent weaknesses, particularly the difficulties in estimating parameters

or more generally in demonstrating model validity.

On the other hand, operational models--which are nearly always some
form of conditional probability model--have their own weaknesses, Al-
though parameter estimation (and therefore model validity) is not a major
problem (by virtue of its very construction), the operational models seem

to have limited usefulness and flexibility.

Both analytical and operational models were studied during the re-
search effort. The first part of the study was devoted to analytical
queueing models that are presented in detail in an interim report.l*
Throughout this part of the study, the model parameters were assumed to
be known and queueing models were formulated for making ASW effectiveneés
calculations. As the study progressed, however, it became evident that
these calculations could be handled more conveniently by Markov methods
than by queueing methods. Moreover, the interim report also clearly
shows that Markov methods could conveniently be used to calculate such
dynamic quantities as the:

Expected number of contacts lost while in the ASW system

(over a given period of time).

Probability‘of missing a true contact (failure to detect)
for a given level of contact activity (false and true
contacts).

Expected time to detection.

Expected time from detection to kill.

Several limitations of the queueing models emerged as the study pro-
gressed, On the one hand, parameter estimation proved to be as formidable
a problem for the queueing models as it is for dynamic Monte Carlo simu-
lation models. On the other hand, a major difficulty arose from computa-

tional considerations: The more complex queueing models required so much

*
References are listed at the end of the report.
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computer time that direct simulation became more attractive for acquiring
numerical reSult;. The conclusion that the queueing models chosen for
study were at a dead end therefore became inescapable, and a reevaluation
of research objectives was accordingly made, The particular queueing
models that had been studied in this phase proved to be valueless for the
next phase., Nevertheless, the experience gained with Markov methodology
(including the formulation of ASW problems in terms of states and transi-
tions, as well as formulas and numerical techniques for obtaining answers)

proved to be valuable during the remainder of the study.

Research effort during the second part of the study was concentrated
on a complementary aspect of effectiveness modeling; namely, model struc-
turing and parameter estimation, This led to consideration of dynamic
operational models instead of dynamic analytical models. Examination of
the classical conditional probability models such as the weapon system

effectiveness (WSE) models was considered as the starting point for this

part of the research effort. Thus, the emphasis in the second part of

the study was on the development of methods for structuring dynamic models
and estimating their parameters rather than methods for calculating
measures of effectiveness when the model parameters are known, More
specifically, the objectives for this part of the study were to:

Analyze conditional: probability effectiveness models and

determine their limitations.

Generalize conditional probability effectiveness models
(using Markov methods if they proved appropriate) to:

- Remove some of the limitations on conditional probability
models; in particular, determine ways to make them dynamic
by incorporating false contacts,

Include, when appropriate, other dynamic aspects of the
tactical problem being modeled,

Develop methods from simulated data and Fleet operational
data for estimating parameters in the dynamic operational
models, )




e Define and investigate ways to formulate new state spaces,
and investigate potential ASW effectiveness applications if
operational Markov models proved appropriate.

*» Investigate methods for reducing the variance of effective-
ness measure estimates and for using variance estimates in
exercise design.

&

B. Research Findings

This section summarizes research findings, and Section C summarizes
research activities for the second part of the study. Every attempt has
been made to separate what was found from what was done. In many respects,
however, the findings are rather general and may often be difficult to
relate to research activities without a detailed study of the body of the

report.

During the final phase of the Queueing Methodology study, research

findings ascertained:

J/ ¢ Queueing theory itself has no direct, unique applicability
to the analysis of ASW system effectiveness., However, some
of the conceptual and computational methods-~~particularly
Markov methods--often used in the analysis of queueing models
are well-suited to analyzing effectiveness in today's complex
tactical environments.

¢ Conditional probability models, the most commonly used opera-
tional models, have many limitations.

~ They are static models, not dynamic. One consequence of
this is that they are defined for only a limited number
of tactical situations, usually one-on-one engagements,

- They have limited utility, flexibility, and predictive
ability in new situations,

- Meaningful sensitivity analyses cannot be performed.

~ They do not explicitly include factors such as false con-
tacts that degrade ASW system capability.

- They use only a limited portion of the data available for’
parameter estimation.




- They have few--if any--environmental or operational
variables, and causative variables may be difficult to
isolate.

Markov (and semi~Markov) methods are not only be used in-
creasingly in analytical ASW effectiveness modeling but also
appear to have considerable potential for operational effec-
tiveness modeling in dynamic ASW environments.

A Markov chain model can be regarded as the natural general-
ization of a conditional probability model, This generaliza-
tion can remove many of the limitations on traditional,
conditional probability models,

Operational Markov models have both advantages and disad-
vantages, The principal advantage is that operationally
meaningful measures of effectiveness can be defined for a
large variety of dynamic tactical contexts., The four
principal overall effectiveness measures that Markov models
can define are:

-~ The probability of mission success.
The average time until mission fajilure (or success).

The probability that mission failure does not occur by a
specified time, '

The probability of occupying a designated state at a random
time,

Many measures of effectiveness used in naval analysis studies

are equivalent to one of these four measures, A wide variety

of missions and tactical situations can be treated by suitably
defining success and failure states,

The principal disadvantage is that some properties of opera-
tional Markov models were found to be rather ''sterile.'

That is, the output effectiveness measure sometimes too
perfectly reflects the data inputs used to estimate parameters,
The four effectiveness measures differ markedly in this re-
spect; specifically, when data from "complete' exercises are
used to estimate the transition probabilities in a Markov
chain model, it was found that:

- The estimated probability of success obtained from Markov
calculations is identical to the ratio of the number of
successes to the number of exercises,




- The estimated conditional mean time until failure obtained
from Markov calculations is identical to the ratio

¥ (times until failure)
total number of failures

provided that only the path data leading to failure are
used to estimate the Markov parameters.

These assertions can be translated into implications con-
cerning the statistical improvability of the measures:

— The variance of the estimate of Prob(success) is not re-
ducible by using a Markov model.

- The variance of the Markov estimate of the average time
to fail (given that failure ultimately occurs) is reducible
by at most a factor roughly equal to the probability that
fajilure ultimately occurs. The estimate will in general
be biased when all the path data are used in a non-Markov
context,

The most difficult step in defining a useful operational
Markov model is expected to be determining a satisfactory
set of states (''state space'')., A set of reasonable re-
quirements for the state space are:

- States should be mutually exclusive and exhaustive.
- Each state should be operationally observable,
- Each state should be of operational significance,

-~ States should be of reasonable generality, though not
necessarily so general as the traditional state sequence
of Opportunity + Detect + Classify + Attack + Kill,

~ States should be defined so that the effectiveness
measure(s) can be calculated by probability statements
about state occupancy or by mean time-to-occupy state-
ments, This often can be accomplished by defining success
and failure states as absorbing states.

- The statistical requirement that knowledge only of the
current state should determine the transition probabilities
for the next step should be reasonably well met,

Effectiveness (and performance) measures can be defined at
two levels in a Markov model. Lower-level measures of ten




relate to the performance of individual subsystems or ASW
functions such as detection and classification, These
measures, which are quantities such as Prob(Classify/Detect)
and the mean time to classify, can be associated with the
microstructure of the model; that is, with transition
probabilities, Overall effectiveness measures that depend
on the entire set of model parameters are at a different
level.

- Degrading factors such as false contacts can be explicitly
included to permit systematic study of the relationship
between the degradation parameters and the effectiveness
measures,

- Many calculations of interest can be routinely made; in
particular, the dynamic response can be calculated when
appropriate and sensitivity analysis can be routinely
performed,

- Many kinds of Fleet operational data, both static and
dynamic, can in theory be used to systematically estimate
the parameters of a Markov model, One type of useful
static data (transition data) is now used to estimate the
the conditional probability parameters in conditional
probability models., Other types of potentially useful
data are rarely if ever used in effectiveness modeling;
an example is average time-in-state data that may be
considered dynamic data,

- Standard methods are available for many parameter estima-
tion problems in Markov modeling, Other methods were in-
vestigated and evaluated during the current research.

Many parameter estimation problems lead to least squares
or quadratic programming problems, When a satisfactory
set of states has been found for a Markov model, parameter
estimation is not expected to be a significant problem,

- Operational Markov models may be used to obtain improved
estimates of certain of the traditional effectiveness
measures,

Selecting a suitable set of states for an operational Markov
model in ASW will often require the aggregation of states
and/or the addition of auxiliary states to make the Markovian
assumption valid, It was found during the research that
auxiliary states can often improve the fit, and specific
methods are given for introducing them., Aggregation of
states by systematic methods is more difficult; one method

7
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sometimes useful is least squares using Prob(state) as a
function of time as input, As a general method, least
squares appear to offer several uses in the structuring of
the state space and in estimating parameters, The general
use seems to result from the linearity of many of the sets
of equations associated with Markov theory. Quadratic pro-
grams are needed when the transition probabilities esti-
mated from least squares are infeasible,

e Markov models may be useful in comparing dissimilar models
and in validating simulation models., The comparison (or
validation) can be accomplished by determining a suitable
common set of states for the two models, estimating the
probability of occupying each state for all relevant in-
stants of time for each model separately, and comparing
the two sets of Prob(state) as a function of time curves.

. Cﬁrrent analysis reports from operational exercises contain
inadequate data for Markov modeling, Only minor changes in
analysis procedures should be required to collect data for
a Markov model with a moderate number of states, however,

e A Markov model may be useful in resolving some experimental
design problems encountered in Fleet exercise planning. One
simple situation in the study was analyzed by using an opti-'
mization method that incorporated the cost of experiments.
The optimum number of samples of each available type were
determined analytically on the assumption that the objective
would minimize the variance of the Prob(success) estimator
subject to the cost constraints,

C. Research Activities

The findings in Section B were arrived at by considering the combined
research activities from both phases of the project. An overview of the

individual sections of this report conveniently summarizes these activities,

A summary of the work done on queueing models during the first phase
of the project is given in Section II, This section also introduces some
results from the analytical queueing models that obtained after the pub-

lication of the interim report.*




In Section III, conditional probability models are defined, dis-
cussed, and shown to be a special form of Markov model. Parameter esti-
mation for this model is briefly discussed, and some intuitive attempts
are made to introduce false contacts by modifying the estimation formula,
The modified formulas prove to be incorrect, however, and the correct
formula (derived from Markov theory) is given, Although the limitations
of conditional probability models are enumerated, several arguments are
given to justify their use. Finally, the suggestion is given that many
of the limitations on conditional probability models can be removed by

generalizing to a Markov model,

Section IV opens with a brief general discussion of useful properties
of Markov models in ASW effectiveness analysis, Four measures of effec-
tiveness of rather general use, but readily definable and calculable in
a Markov model, are then given, Also discussed is model formulation that
includes defining a set of states so that the measures may be conveniently
calculated, State space definition, asserted to be the most difficuit
step in model formulation, and rules of thumb for formulating a set of
states are given., Parameter estimation in a Markov model applied to an
ASW situation is briefly discussed. Finally, the possibility is mentioned

of using operational data not currently used for modeling.

Basic Markov chain theory and formulas are given in Section V., This
material is needed for either analytical or operational modeling; for the
latter, it is needed both for calculating effectiveness measures and as a
basis for several parameter estimation methods. Algebraic formulas for
all the measures are included. Common-sense interpretations of the ab-
sorption probability formulas and their elements are given where appro-

priate to aid the understanding.

In Section VI, parameter estimation for a Markov model is discussed

at length. We point out the usefulness of factoring the estimation problem




into static and dynamic parts. Parameters for the static part, which
correspond to a conditional probability model (or the imbedded chain in
Markov theory), may be estimated from transition data only. The dynamic
parameters can then be separately estimated from mean time~in~state opera-

tional data.

Methods for estimating transition probabilities are then given for
various assumptions about the data available. The input data are assumed
to be transition data, mean time-in-state data, mean first-passage time
data, data on the first and second moments of first passage times, or
probability of state as a function of time data. The need for least
squares and quadratic programming are shown in several instances, but

these are discussed in more detail later in the section.

Holding (or waiting) times in a state, which are a function of the
self-transition probabilities (pii) in a Markov chain, are the subject
of the remainder of the section. The pii estimator is first shown to be
a simple function of the observed mean time in state i in a Markov chain.
Then, various ways to better approximate the holding time behavior by en-
larging the chain through the addition of auxiliary states are suggested
and examples are given., The section concludes with some chi-squared
goodness—-of-fit tests that may be used to test the reasonableness of the

Markov assumption,

Section VII deals with the statistical problem of reducing the
variance of the four effectiveness measures by using a Markov model.
Improvement is measured relative to the estimates obtainable directly
from the data. Certain mathematical identities (proved as theorems in
an appendix) are the key tool for discussing this important problem area.

Several implications of the theorems conclude the section,

Anticipating that most real~world ASW problems will not have a Markov

structure (at least when a natural set of states is used), we need to know

10




how well Markov methods work on non-Markov problems, Therefore, in Sec-
tion VIII, a dynamic non-Markov model--conveniently described by a
Probability-State-Time (PST) diagram--is introduced, motivated, and re-
lated to a Markov model, A PST diagram is used in conjunction with a
dynamic (Markov) version of the WSE model in Section IX. Numerical ex-
perimentation uses data from the PST-defined model, and the resulting

dynamic behavior given is compared with the dynamics of the actual process.

Various methods are used to estimate parameters, and auxiliary states
are sometimes added along the lines of the suggestions in Section VI,
Although the addition of auxiliary states improved the dynamic fit, all
Markov chain models fit rather poorly. Therefore, two more sophisticated
Markov models were tried. The first, a semi-Markov model, resulted in a
substantial improvement. The last attempt used time itself in the state
definitions: The result was an.essentially perfect dynamic fit at the

cost of a greatly increased number of states.

In Section X, three false-contact models were defined by adding
states for the prosecution of false contacts to the traditional states-—-
search, opportunity, detect, classify, and kill. Markov formulas are

given for the Prob(Success) effectiveness measure; the form is a product

of conditional probabilities divided by a false contact correction factor.

For the second of these models, the influence of false contacts on effec-
+ tiveness takes the form of a multiplicative correction factor to apply to
the traditional product of conditional probabilities., The third and most
complex false contact model was defined by a cartésian product method; it
has 27 states and includes false attacks and earlier stages of false-

contact prosecution.

Fur ther numerical expectation, with a PST diagram for the first false
contact model in Section X--is performed in Section XI. Five methods were

used to estimate parameters with the original state space, Three of these
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methods were semi-Markov and the other two were Markov chains; none
worked well. Monte Carlo experiments were also performed to study

sampling problems,

After the earlier parameter estimation attempts failed with the
original state space, some methods were tried with auxiliary states,
Some improvement resulted from the most elaborate of these models, but
the fit remained unsatisfactory. By the end of the experimentation, the

reasons for the many failures became apparent.

A new topic, Markov models and Monte Carlo simulation, is the sub-
Jject of Section XII. A single Monte Carlo model including a submarine,
an aircraft carrier, and an acoustic decoy was selected for s;udy with
the use of the mean survival time measure. The idea was to use the simu-
lation to generate data for estimating the parameters of a Markov chain
model, A simple, natural set of states proved to be satisfactory for
this simulation., Parameters were determined in two different ways and
led to almost identical estimates, Probability of state as a function
of time comparisons were made between the approximating Markov chain and
the simulation model's direct output for assessing the validity of the
approximation. Finally, some basic sensitivity analyses were performed
by using the fitted parameters, and an estimate was made of the increase
in survival time as a result of an increase in the primary decoy parameter

(called "capture time'),

Section XIII deals with two questions: how to combine different
estimates of the same parameter in an optimal way, and how to use a Markov
model in exercise design, Both of these questions, which are treated in
a very limited manner, entail the use of estimates of variance, For
question one, formulas are given for combining two or three independent
estimates of an unknown constant, and the formulas are applied to the

transition probabilities in a Markov chain, To answer the second question,
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an example of a simple three-state Markov chain model is assumed; a fuf—
ther assumption is that the number of samples at each of the two transient
states can be freely chosen, Formulas are then derived for the optimum
number of samples under a cost constraint, and a table is provided to

illustrate the optimal sample sizes for various costs,

D. Possible Operational Applications

Possible operational applications are discussed in Section XIV, the
final section. Many forms of false contact models are possible using
Markov concepts. The choice of a state depends on the application and
the problem features the analyst wishes to distinguish, Markov models
also may be helpful in studying the difficult subject of countermeasure
effectiveness because states can be defined in terms of information,
States and Markov models are then discussed in relation to the UPTIDE
series of exercises, and suggestions are made for analysis using some of
the concepts from this report.' Other possible applications include
modeling: range from a submarine and an HVU, electromagnetic radiations
from an aircraft carrier, submarine exposure, and the submarine's classi-

fication process.
Two recommendations conclude the body of the report:

(1) A research project in an area of current interest to the
Navy should be undertaken to apply the dynamic Markov
modeling methods developed during the study. The model
should be developed for class of tactical problems where
wholly satisfactory measures of effectiveness have not yet
been developed because of the dynamic nature of the prob-
lem, the complexity of the problem, or the difficulty of
relating lower level performance measures to the overall
effectiveness measures., The Naval Analysis Programs Office
of the Office of Naval Research could sponsor such research
as a continuation of the Dynamic Analysis study.

(2) The technique of using a Markov model to compare dissimilar
models or to assist in validating a simulation model should

13




be suggested to Navy analysts concerned with simulation
validation and effectiveness modeling,
Six appendices follow the body of the report. Appendix A discusses

ASW modeling which is conceptually reiated to the report, and compares
the other approaches with those in the interim report and the present
report, Appendix B treats a special topic which relates to the analytical
Queueing Models, Appendix C gives Mason's rule for determining trans-
missions in a flowgraph; the rule was applied to obtain the measures of
effectiveness for the two of the false contact models., Appendix D dis-
cusses least squares and quadratic programming that were needed for
parameter estimation. Appendix E has proofs of the three important iden-
tities relating to parameter estimation. Finally, Appendix F amplifies

the earlier discussion of state selection,
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II SUMMARY OF QUEUEING MODELS OF ASW UNITS

A, Summary of Work During the First Phase

During the first year of the contract, the emphasis was on modeling
ASW operations in terms of queueing theory.1 The objective was improved
representation of ASW dynamics that would lead to more realistic measures
of effectiveness than those currently available with traditional formulas
consisting of products of success probabilities (the WSE model, for ex-~
ample)., Because ''congestion'' from many simultaneous contacts causes some
degree of delay in ASW system processing, the suggestion to attempt

queueing models in ASW analysis arose,

After the literature on queueing theory and its applications was re-~
viewed, the conclusion was that a direct application of readily available
results on single queue/multiﬁle server systems is infeasible, ASW situa-
tions simply do not exhibit properties of a single 'waiting line' in any
sense, What was needed to relate to ASW appeared to a degree in articles
on networks of queues, such as in models of time-sharing and other com-
puting systems, Again, however, no direct parallel was found because
contacts could not be justifiably regarded as passing through a series of
ASW process stages without'prOper consideration of strong interaction be-
tween the stages, Therefore, the decision was made to construct a new
set of congestion models that would exhibit queueing~like characteristics,
be amenable to énalysis by techniques in queueing theory, and relate
better to the ASW situations considered. This resulted in queueing
analysis techniques found for solution of the models created; the key
technique was the method of imbedded Markov chains. Additional techniques

found of great value in computations with the imbedded Markov models were:
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¢ Laplace transform solutions,
e Flowgraph techniques to organize computations efficiently.
e Matrix flowgraphs to aid in model formulation,

e Successive over relaxation (SOR) method for solving large
systems of linear differential equations associated with
Markov processes, :

e Padé approximants to etA for speeding up numerical integra-
tion with Markov models,
Other methods useful in queueing analysis were not adaptable to ASW models
considered on this project.® These methods include
¢ Contour integration of Laplace transforms for waiting time
distribution in tandem queues.
e Integral equations for waiting time distributions,
e Integro-differential equations for transient waiting time
distributions,
Although the queueing literature reports very powerful results with the
above techniques, these methods are mainly for a single queue; no clear
way appears as feasible as the Markov techniques for generalizing their

applicability to more complex congestion models,

The work on queueing models was divided into two areas: at the
single ASW unit level and at the force level, This two-pronged approach
decision was made on the basis that congestion in ASW operations probably
originates in processing delays of contact information on individual ASW
screen Oor search units, but that the overall effect is on the force level
with regard to decisions to prosecute, maneuver for improved contact data,
or evade for safety. Consequently, work was started on the following two
separate but closely related models,

e A model for analysis-of congestion effects in an ASW unit

providing distributions for its periods of saturated and
unsaturated detection capability. '
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¢ A model for computing the probability of detecting a target
by a typical ASW force configuration of units with known
saturated and unsaturated period distributions and detection
versus range characteristics, A summary discussion of these
models is presented in the following two subsections.

1. ASW Unit Model

For the unit ASW model it was assumed that as a contact passes
through the system, it occupies a unit of sonar service while in the first
"server"-—i.e., while undergoing detection--and continues to occupy that
unit of sonar service even when in any of the three queues following the
first server, Similarly, the Combat Information Center (CIC) resource
is assumed to be occupied at the rate of one unit per contact from the

moment of entering "localization" and up to leaving the system and so on,

The unit model assumed that each ASW function serves a limited
number of multiple contacts simultaneously. The unit model representa-
tion weighs all contacts uniformly for the load each places on a server,

or equivalently, for the difficulty of service.

The command and control and classification functions were
omitted from the initial model.* Similarly, certain other features of
an ASW engagement have not been modeled. Some of these are: hand-off
of functions from other ASW units, lost contact processes, and unsuccess-

ful kill attempts and reattack process.

Based on the above considerations, the initial multiple queueing
situation of Figure 2,1 was selected for study. The meaning of Figure

2,1 follows.

Acoustic stimuli, if they are locally generated as they become
available for detection, await the availability of the detection server
D in a fictitious queue QD. This queue is created to measure the statis-

tics of missed and delayed detection caused by preoccupation of the
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detection process, As soon as an element of the detection server is
available (four degrees of detection server occupancy are used here for
specificity), the stimulus progresses 'through’ the detection phase
according to prescribed detection time statistics. From this point the
stimulus is a contact. Contacts not in process of localization are
represented as 'waiting' in a queue QL in the same manner as the contacts
progressed from a queue awaiting detection to a queue awaiting localiza-
tion, So, the contacts progreéss from the latter queue, through the .
localization process, through a queue awaiting the attack function, and

so on, through service by the kill function,

The number of parallel service units at each stage was selected
for development purposes to be just enough so that queueing is possible
at the following stage, That is, in view of service at each stage being
"tied up" until a contact leaves the system, at least one less unit of
service is necessary at each successive stage, In other words, the server
capacities were chosen to be simple enough for a first study, but compli-

cated enough to allow queues to form in all possible stages.

An alternative schematic representation of the situation is

presented in Figure 2,2, This figure shows the idea of the presence of

a contact being felt in several places at once, in that a contact
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progressively uses the resource of sonar (detection), then sonar, CIC

(localization), and so on, until it finally exits from the system.

As a start it was assumed that all parallel service units at
each stage have the same exponential service distribution, with parameters
as in Figure 2.1. It must be remembered that a completion of a service
does not make a given service unit available for other contacts; such a
completion merely tells when a transition of a contact to the next state
occurs (either into the next server or the queue ahead of it), The in-
put distribution for all true and false contacts is also assumed to be
exponential with parameter A. (Both the input and service distributions
can be made more general by using a network of parallel and series ex-

ponential holding times,)

Various attributes of factors associated with queueing systems
in general were considered in structuring a suitable model for evaluating
ASW system performance., The primary statistical distributions were Jjudged

to be:

e Unsaturated time distribution (for entire system).
¢ Saturated time distribution (for entire system).

¢ Waiting time distribution (in first queue, i,e,, ahead
of detection).

¢ Distribution of time spent in entire system,
Other significant distributions are:

e Queue lengths at the various stages.
¢ The number of contacts exiting any stage in a given
time,
The primary statistical distributions are needed in the force effective-
ness model,l The others may be useful for evaluating the effects of
physical storage capacity or other limitations at various stages of the

ASW system and for determining the nature of the input distributions to
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other ASW platform queueing models coupled to a given one through a

command and control hand-off system,

The above statistical distributions can be used to calculate

the following possible measures of effectiveness of an ASW unit:

e Probability that a contact is lost.

¢+ Expected number of contacts lost while in the system,
over a given period of time,

e Probability of missing a true contact (failure to de-
tect) for a given level of contact activity (false and
true).

 Expected time to detect.

e Expected time from detection to kill.

If the classification function were added to the model, the

following additional measures would be obtainable:

e Probability of losing a contact before classifying.

. Ekpected time to classify.

e Probability that a false contact is pursued all the

way through to the kill function,

Computation was aimed only at numerical calculation of the
statistical distributions as these are the most difficult to obtain.
The above measures of effectiveness were not considered in the current
effort because fleet-operational data were unavailable to render them
meaningful. Graphs comparing analytical solutions and simulation re-
sults for some of the computations that were performed are presented in

Section II-B.

2. ASW Force Effectiveness Model

The force level queueing model deveioped during the first phase

of this study considered an ASW screening situation in which ASW units
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maneuver within a protected area surrounding a task force, The individual
ASW units were assumed to experience congestion from the abundance of
contacts according to the unit queueing model previously described. In
the numerical example worked out, only exponential approximations to the

distributions of the unit model were used,.

The force model was based on the idea that units could be com-
bined in a single detection device whose statistics for ''windows' of
possible target capture result from joint probability of detection by
any one of the ASW units within range of a target. Kinematics of both
targets and ASW units were included along with a simple range-law for
probability of detection given opportunity, The example used for compu-
tations is described by Figure 2,3 that shows initial positions and
velocity vectors of the ASW units participating. A lengthy series of
Lalculations was performed to obtain probabilities of a target ever being
detected prior to its penetrating the protected zone, given that the tar-
get approaches the force from all possible (quantized) positions of
initial appearance, as indicated in Figure 2.4 (all probabilities have

been multiplied by 100 in the figure).

The assumption in combining ASW units into a force was that
each unit individually experiences alternating periods of being saturated
and not saturated by contacts it is processing, as determined by the unit
model. In addition, a waiting time distribution accounted for the first
period of the series of busy and idle periods of any ASW unit--with re-
gard to the time arrival of a specific contact--because the given contact
could arrive during either a busy or idle time, The probability that a
target is ever detected in time for effective counteraction was expressed
in terms of probabilities of detection by each of the sensors during each

of their unsaturated periods up until the time that the target penetrates

the protected zone.
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B, Further Computations with the Single Unit Model

The most complex of all flowgraphs introduced in the previous year's
work on a queueing model of a single ASW unit was for ''time in the sys-
tem," i,e., the time from the moment a contact arrives at the detection
periphery to the time that it is finally killed. Since only true targets
were considered, all contacts were assumed to be eventually localized,
attacked, and then killed, The same methodology would apply equally

well, however, to a more general semi-Markov model with classification,

false contacts, and possible loss of contacts,

Because of the large number of states in the time-in-system flow-
graph (see Ref, 1, p. III-39 and Figures III-19 to III-22), actual compu-
tations of distributions for this case were not completed during the
first year's work., Still more efficient numerical techniques had to be
set up early in the current year before results were obtainable, In
addition to the continued analytical work, a Monte Carlo simulation model
was prepared and run in parallel with the analytical model, Both ap-
proaches led to almost identical plots for all distributions, i.e., con-
tact waiting time, ASW system saturated and unsaturated time, and time
to process a specified contact from opportunity to kill., The results
for these distributions and the simulation data will be described further

below.

1. Special Numerical Integration Method for Solving Large Flowgraphs

A special integration technique, SOR, was used to handle the

P
large size of the Markov model for contact time in the system, The

advantage of using this method and an explanation of it are laid out in

* .
We are indebted to Dr, Samuel Schecter who recommended the methods used

here.
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Appendix B of Ref. 1. Steps were taken to reduce integration time of
this large system of equations to as low a value as possible per inte~
gration step. Some convergence difficulties were encountered for the
over-relaxation iterations, as the method is quite critical with regard
to choice of the over~relaxation parameter w. A detailed discussion of
the problems associated with the selection of w is given in Appendix B
of this report.

The analytically computed probability distribution for contact
time in the system is given in Figure 2.5 along with the simulation data.*
Almost identical results were obtained by the two methods up to t = 0.6
hours, but the analytical integration was not carried out any further be-

cause of the relatively high computing cost compared to simulation cost.

2, Results of a Simulation Approach

Although analytical modeling was the primary concern of the
first phase of the current project, it was decided to compare results
obtained so far with data collected from a direct simulation of the single
ASW unit model, Use was made of the General Activity Simulation Program
(GASP). The results obtained from simulation were esséntially identical
to the analytical results, Figures 2.6(a), (b), and (c) are copies of
the analytical results (Figure 11I-26 of Ref, 1) with the simulation re-
sﬁlts superimposed. Similarly, Figure 2,7 and Figure 2,2 demonstrate

the comparison of steady~state and time~in~system results.

Each integration "step" here is not the usual "infinitesimal'' one, how-
ever, as we are using Padé approximants of eAAt accurate up to

HAAtH ~ 1 or 2 as opposed to 0.001, or something of that order, in com-
mon integration. Hence, only a few "steps’ are used in total-~-~by our
method-~to achieve enough data points to plot curves for the desired
distributions,.
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The fact that simulation verifies the results of the analytical
work is rewarding because rather complex analytical modeling and computa-
tion were performed, The slight differences between some of the simula-
tion and analytical curves probably result from statistical fluctuations.
(The simulation was run for an equivalent of up to 10,000 hr of model
time, thus processing a total of about 35,000 contacts for an arrival

rate of 3.5/hr.)

A disappointing feature of the above comparison (in terms of
the desirability of an analytical approach) is that the simulation
approach took a great deal less computer effort to obtain some of the
results, even with highly dimensional Markov models, Thus, further
analytical work in the direction of more realistic models~--including
classification, nonexponential distributions for contact arrivals, and
the like--during the current year had to be restricted to Markov and
semi-Markov models of modest dimensions, having in the order of 3 to 28

states,

C. Proposed Unit Model Extensions to Represent Classification

The process of classifying contacts was omitted from the queueing
models of the first year of the current project so that complexity of
initial models could be reduced and analytical approaches could be tested
on more tractable computational problems. This section describes how

classification may be included within the same analytical framework.

To include classification in the queueing models, the dimensionality
of an associated Markov.process imbedded in the queueing process has to
be increased. Classification is basically a decision process whose func-
tion is to separate true from false contacts; therefore, at least these
two categories of contacts must be considered., In practice, several

categories are used, but model construction was begun with the categories
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possible sub, nonsub, and certain sub. Furthermore, classification is
not always perfect; hence, there will be actually six significant cate-

gories of contacts as shown in Table 2,1. The false nonsub category acts

Table 2.1

SIGNIFICANT CATEGORIES OF CONTACT

Contacts Classified
True Possible sub | Certain sub | Nonsub
False Possible sub | Certain sub | Nonsub

as a ''sink’’; that is, any contacts falling into it are assumed not to be
picked up again as possible subs., All contacts start out as possible
subs, by the definition of contact. It is presumed that true and false
contacts might obtain different transition rates among the three classi-
fication categories., Also, all transition rates would probably vary
with the contact's position in the queueing system and with the degree

of congestion of the system,

Two main proposed approaches to specific formulation of a single

ASW unit queueing model have evolved during the current project.

Model 1--Classification is assumed to be performed '"instantly' just
before any previously modeled transition of the Markov model (except for
an arrival), i.e., at the completion of a detection service, a localiza-
tion service, and the like, This approéch is relatively easy to imple-
ment because it mérely modifies the manner in which transitions take
place in the Markov models developed to date and extends them to include
the extra categories of contacts mentioned above. Thus, just at the
completion of detection of a particular contact if that contact moved

in the previous model to the localization server, it would now move to
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it as still a possible sub with a certain probability, or as a certain

sub with another probability, or it may exit into the false contact bin
with the remaining probability. Similarly, at the completion of a locali-
zation service, contacts would split off into different categories,
Presumably, the probability of classification--i,e,, passing from the
possible sub to either the certain or nonsub states--would be modeled
with a higher and higher proﬁability as a contact progresses further and
further into the queueing system, This model is relatively easy to imple-
ment by simulation, and initial analytical effort has been made to set up

the appropriate Markov model,

Model 2--An alternative approach is to assume that classification
is a process in which the decisions are made at separate times from the
times of a contact's transition from one queueing service to another in
the system. One way to handle this is to regard classification as being
performed by a separate server whose completion of service competes with
others in the Markov model for determination of the next transition, In
practice, classification is really accomplished jointly by the personnel
at the various ASW function locations, and presumably a final decision
rests on the commanding officer who is not associated expressly with any

one of the servers of our Markov model and receives information from all

of them, Thus, it is logical to consider an additional "competing process'

that contributes to the Markov model's transition decisions and includes

classification (Appendix A of Ref, 1).

Because the second model is basically no more difficult to simulate
than the first one, it was chosen for extending the currently available
simﬁlation model, A detailed set of flow charts to implement this ap-
proach were prepared but not programmed because of the change of emphasis

toward models that are more easily related to operational parameters,




Although the single ASW unit model with classification added was

not carried through to a computational analysis, recording its conceptual

attributes is worthwhile., The structure of either Model 1 or Model 2

above

is depicted in Figure 2.8, The ''Black Box' modeling the classifica-

tion process will be explained further below. The dotted lines represent

the direction of effect of any classification decision. The assumption

Contacts
Classified
Non-sub

False
Contacts

*Killed®
Contacts

O|Oo|O|oO

True
Contacts

Classifier
"Black Box”

FIGURE 2.8 STRUCTURE OF SINGLE-UNIT MODEL INCLUDING CLASSIFICATION

was made that a decision to classify a contact nonsub immediately rejects

the c

queue

ontact out of the system so that other contacts can move up in their

s, A decision that some contact is certain sub has been tentatively

assumed to have the possible effects shown in Table 2,2,

The features shown in the table model possible effects of a classi-

fication decision on the operation of the basic single-unit model. How-

ever,

considering the reverse effect of system state transitions on the

classification process itself may also be important. First of all, a

model of the structure of the "Black Box' in Figure 2.8 must be chosen,
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Table 2,2

EFFECTS OF ''CERTAIN' SUBMARINE CONTACTS

Case Result

A new certain sub contact | The not-yet-~classified contact is displaced
in a queue is held up by by the new certain sub contact, and the

a not-yet-classified former goes back into queue, with all
contact in next service, service to date invalidated--i.e,, it will
start from scratch the next time it enters
that service,

New certain sub contact The service rate may possibly be raised,
is in a service, thus indicating more concerted effort by
personnel,

In the investigations by Operations Research Incorporated (ORI) in a
parallel effort related to this project,® the classification process was
basically represented by a 'growth of information" about a contact versus
statistical sampling of that information to arrive at a classification
decision. A simplified view of this approach was adopted by representing

growth of information as shown in Figure 2,9, The growth transition rate

A would naturally be higher than the regression rate u in Figure 2.9,
c c

and would thereby ensure that a contact would eventually be classified
(if it stayed in the system long enough). The behavior of the model in
Figure 2.9 would be approximately like that of an '"exploding' queue with

intensity p = A/WL > 1, in which the occurrence of a classification would

POSSIBLE A

sUB A

STATE c C Certain Sub)|
State

INPUT

(CONTACTS) Non - sub

‘LC lic State

FIGURE 2.9 A MARKOV MODEL OF THE CLASSIFICATION PROCESS
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be represented by an overflow from the truncated queue, This model might
even be adaptable to including queueing features separate from those of

the rest of the model.

Additional statistical measures expected to be derivable from the
unit ASW model with classification added are:
e The distribution of time a true contact spends in the system
for a given false contact ratio at the detector input.

e The relative degrees of congestion at various parts of the
system caused by presence of false contacts.
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III CONDITIONAL PROBABILITY MODELS

A, Introduction

Basically, two types of effectiveness models are used in ASW studies,
The first type of model--often called an analytical model--is used to
estimate (or predict) effectiveness when basic parameters of the problem
such as detection ranges, sweep widths, environmental variables, and so
on, are known, Equations (mathematical or mathematical and logical) are
given from which system effectiveness may be calculated when these input
quantities are known or are assumed té be known, The ASW operations
modeled may never have actually been performed (nonexistent equipment
may be included) so that data are unavailable for estimating many of the
model parameters. The usual procedure is to use the available data to
estimate the input variables of the model--which often characterize
equipment or systems--and to use these data also to structure the model
wherever possible, and to hypothesize the remainder of the structure,
The effectiveness measure for this kind of model is often a probability
of success, such as the probability of a destroyer detecting a submarine,
or a submarine detecting, classifying, closing, and successfully attacking

another submarine.

The second type of model--often called an operational model--also
requires inputs, but these are directly observed quantities from real
ASW operations or from ASW exercises, Instead of assuming values of in-
put variables and computing intermediate quantities such as conditional
probabilities, an operational model estimates them directly from observed

outcomes,
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A common form of model used both as an analytical and op€rational
model is the conditional probability model. The basic idea is to choose
a series of requirements necessary and sufficient for mission success.
These requirements often are directly related to equipment functions or
system or subsystem functions; often, an interface of a subsystem with
another subsystem is where achievement of a requirement is to be observed.
Because the achievement of a requirement is necessarily conditional on an
opportunity for the portion of the system to meet the requirement and it
is often assumed to be a probability, this form of model is known as a

conditional probability model.

B. A Conditional Probability Model as a Markov Model

Conditional probability models can be conveniently described by a
simple diagram made up of branches and nodes, These branches correspond

to requirements and the nodes correspond to cumulative requirements met.

An example of a typical conditional probability model of the opera-
tional type is a simplified version of the WSE model developed and used
in the Big Daddy series of sub~on-sub barrier exercises performed several
years ago. The diagram for this model is shown in Figure 3.1. The labels
within the nodes, called states, are oversimplified descriptions of
possible stages in the sequence of events leading to kill., More complete

definitions are as follows.

Oppor tunity A detection opportunity is presented,

Detect To detect the transmitting submarine given a detec-
tion opportunity.

Classify Correctly classify a submarine as a submarine, given
that a submarine has been detected.

Attack Satisfy attack conditions on the submarine, given
that the submarine was correctly classified,

Kill Submarine is destroyed, or placed out of action,
given that an attack was made.
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FIGURE 31 STATES IN THE WEAPON SYSTEM EFFECTIVENESS MODEL

The arc (or branch) from detect to classify in a sense represents
the requirements for classification because a transition from detect to
classify is made only when the classification requirements are met, Other
branches may be similarly interpreted by consideration of the nodes (or

states) they connect.

The diagram of Figure 3.1 can be modified by adding a node (state)
labeled fail, for failure to kill the transiting submarine, Since failures
can occur by féiling to detect given opportunity, to classify given de-
tection, and so on in sequence, branches can be added to show transitions

from individual states to Fail as shown in Figure 3,2,

P(D/O) P(C/D) P(A/C)

P{K/A)

OPPORTUNITY

FIGURE 3.2 TRANSITION DIAGRAM FOR THE WEAPON SYSTEM EFFECTIVENESS MODEL

In terms of the diagram in Figure 3.2, a given barrier exercise re-
sulting in a detection opportuﬁity can be summarized by specifying the
path followed from the opportunity state to one of the terminal states
kill or fail, If states are represented by their first letters, then a
string of symbols representing the path can be determined from each exer-
cise, For example, the path ODCF means the transiting submarine presented

a detection opportunity, it was then detected and classified by the
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barrier submarine, but attack was not accomplished; hence, the transiting
submarine failed in its mission., The desired path for the barrier sub-

marine is the unique path from opportunity to kill represented by ODCAK.

The measure of effectiveness for the barrier submarine mission (WSE)
is now defined as the probability of kill of a transiting submarine,

given that a detection opportunity is presented,

By the use of standard formulas for conditional probability, the

probability of kill given opportunity can be written:
P(X|0) = P(D|0) X P(C|O and D) X P(A|O and D and C)
X P(KlO and D and C and A) . (3.1)

By assumption, however, detect can only occur following opportunity, and
classify can only occur following detect. Therefore, the only remaining
conditions in each conditional probability are the latest ones, so that

the formula for WSE becomes:
WSE = P(K|0) = P(D|0) X P(C|D) X P(A|C) X P(K|A) . (3.2)

In terms of the state diagram of Figure 3,2, WSE is the probability
that a path terminates in kill, given that it started in opportunity.
If the conditional probabilities of formula (3.2) are recorded on the
branches of Figure 3,2 as shown, WSE is seen to be the product of the
probabilities along the path from opportunity to kill, The value of WSE
is estimated from exercise data, where each conditional probability is

estimated by a ratio--number of transitions to next state: number of
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opportunities for this transition. For example, the estimate of P(ClD)

is:

number of classifications
number of detections

= P(C‘D) . (3.3)

Now assume that data from a number of transit exercises are avail-~-

able, and there are:
N transits presenting detection opportunity
n. transits resulting in detection
n_ transits resulting in classification
n_ transits resulting in attack

n4 transits resulting in kill,

The diagram of Figure 3.2 can be used to tabulate these numbers of transi-

tions, and the result is shown in Figure 3,3. The values at the nodes are

the numbers of paths entering the given node,

OPPORTUNITY
N

N-n4

FIGURE 3.3 DATA FOR THE WEAPON SYSTEM EFFECTIVENESS MODEL

Replacing each conditional probability in the definition of WSE by

its estimate results in the following estimate of WSE.

. (3.4)

:3|:3
&}

nl n3
WSE = — » ——
N n

=
\S}

5‘5
W I
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Because the n,, Dy, and n, terms all cancel, the end result is

WSE =

n
4 number of kills
X . (3.5)

number of transits presenting opportunity
If a transit presenting an opportunity is considered a trial, and a kill

is a successful trial, then

number of successes
WSE = - (3.6)
number of trials

which is the usual estimator for the probability of success for Bernoulli
trials, If the assumption can be accepted that a set of transit exer-
cises can be considered a set of independent Bernoulli trials, then
simply counting the number of successes would provide this estimate of

WSE directly.

The intermediate states (detect, classify, attack) did not matter
because the transition counting entailed in passing through these states
cancelled out. This cancellation will always occur in this kind of model.
Further discussion of this point will be deferred to Section VII, At
this point, it suffices to note that the cancellation occurs when each
transit begins with opportunity and ends with kill or failure, provided

that no repeated entries occur in any state,

The assumption was made above that each exercise could be translated
into a path from the starting node to either of the terminal nodes without
returning to any state after leaving it. In terms of the diagram, this
means that no path formed a "loop."” 1If one attempts to calculate success
probabilities in a problem with loops by the usual conditional methods,

the results will be in error,

An example of an erroneous attempt is shown in Figure 3,4, where
the detect and classify states from Figure 3,2 have been merged for

simplicity.
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FIGURE 3.4 SUCCESS PROBABILITIES WITH LOOPS (BASED ON FIGURE 3.3)

Assume that the observed paths and the numbers of times each path
was observed are recorded as shown on the bottom of Figure 3.4. For
example, n, paths are designated O D A K, meaning that there were n
occurrences of the sequence Opportunity — Detect — Attack — Kill. A
return to an earlier state (a loop) occurs in the last path since oppor-
tunity/detect occurs more than once in this path. Because paths 1 and 5
terminate in kill, the number of suécesses is (nl + n5) and the Bernoulli

estimator of probability of kill Pb(Klo) is

nl + n5
P (K|0) = 5 —— . (3.7)

2

i=1
In the path of type 5, the opportunity state is entered twice. That
is, following an initial opportunity is a first detection, then the con-

tact is lost, and a second opportunity is presented. This then presents

two opportunities.
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The number of possible transitions between all pairs of states can
be conveniently recorded on the branches between states as shown in
Figure 3.4. To obtain these values, each path through from opportunity
to kill or fail can be traced and added to the counter on each branch as
the transition is made; or the number of transitions from the encoded

path definitions can simply be counted,

Consider next the usual conditional probability estimator for proba-

bility of Kill,

P(k]|0) = P(D|0) X P(A|D) X P(K|A)

number of number of number of
detections attacks kills
= X X - . (3.8)
number of number of number of
opportunities detections attacks

Using transition data from Figure 3.4 and estimating each fraction as

(number of transitions out of a state to designated state)

results in (total number of transitions out of the state)

n. +n +n_+ 2 n

number of detections 1 2 3 5
number of opportunities n_. +n_+n_+n_ + 2 n
1 2 3 4
n, +n_ -+ n
number of attacks - 1 2 5
number of detections n, + n, + n, +2n

n. +n
number of kills 1 5

number of attacks n_ + + n
um r O a a 1 nz 5

Putting these ratios into Eq. (3.8) shows that the number of detec-

tions and attacks again cancel, resulting in

n +n
number of kills 1 5

P(K{0) = = . (3.9
( ‘ ) number of opportunities nl + n2 + n3 + n4 + 2 n5

7

i
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The numerator of Eq. (3.9) agrees with that in Eq. (3.7), but the
denominator of Eq. (3.9) is larger than that in Eq. (3.7) by n5, which
is the number of second opportunities, Because n5 is nonnegative, the
Bernoulli estimator of Eq, (3.7) cannot be less than the usual estimator

of Eq. (3.8); that is,
P, (X|0) = P(x|0) . (3.10)

Therefore, the usual estimator of Eq. (3.8) is incorrect; it esti-
mates a different quantity from P(K|0). The Bernoulli estimator is the
correct estimator to use in this situation, and its formula in terms of
estimates of conditional probabilities will be derived by Markov methods

in Appendix C on Mason's rule, The formula, given here without justifi-

cation, is

P(D|0) P(A|D) P(k|A)
1 - P(D|0) P(O|D)

P(x|0) = . (3.11)
The new conditional probability in the denominator P(O|D) is the condi-
tional probability associated with the detect-to-opportunity branch.

That is, it is the probability of another opportunity following detection

(as contrasted with attack or fail), conditioned on detection occurring.

Still other loopless estimators may be attempted with conditional
probability methods., For example, the return loop from detect to oppor-
tunity may be simply ignored. The ratios estimating P(D‘O) and P(K‘A)

remain the same, but P(AlD) changes to

n +n 4+ n
1 2 S

+ + +n
n, +n n5) 3

P(alD) =
(71 m

because the n5 returns to opportunity are ignored.
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Substitution of this value in Eq. (3.8) gives a new estimator

(n +n 4+ n_ 4+ 2n n +n
~ 1 2 3 5 1 5
P(k|o) =

- +n_ 4+ n_ + + 2
(nl n2 n3 n4 ns)[<n1 + n2 + n5) + n3]

which is again incorrect because it differs from the Bernoulli estimator.

C. Limitations of Conditional Probability Models

It was just observed that the probability of success estimator
arrived at by successive conditioning to form a conditional probability
model is identical to the estimator for Bernoulli trials when each transit
exercise started from the same state (opportunity) and ended in sSuccess
(kill) or fail. (Exercise data of this type will be called 'complete"
exercise data henceforth,) Further limitations of conditional probability
models are:

¢ Only a limited number of situations are defined--usually

one-on-one engagements, Applicability is limited to tac-

tical situations in which a single set of serial require-
ments for mission success can be identified.

» They are static, and therefore problems in which time is an
essential element may not be capable of being treated.
Dynamic operational data (such as average time to prosecute
a false contact) cannot be directly used in estimating the
parameters of a conditional probability model.

e They have few if any controllable variables., Hence, they
are of limited use in improving equipment or operations,
They cannot be used to improve tactics,

e Degrading factors such as false contacts do not appear ex-
plicitly. Hence, the quantitative influence of these de-
grading factors cannot be assessed.

¢ Only a limited portion of the available data is used for
parameter estimation because only static transition data
can be used to estimate their parameters,

e They have limited predictive power,

e Confidence limits are difficult to obtain.
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In view of these limitations, the following justify the use of a

conditional probability model.

e Conditional probability models incorporate all the pertinent
operational and environmental factors directly and therefore
require a minimal number of hypothesized relationships.

¢ Data are often available from sources other than complete
exercises. In particular, data are often available from
truncated exercises (those beginning in an intermediate
state/ending in an intermediate state).

e« The value of the probability of success is not the only
useful information. For example, breaking down an operation
into phases and observing transition information as is done
in estimating transition probabilities often reveals points
where system operation may be improved.

¢ Some transitions may be unobservable, and complete exercises
may therefore be impossible, For example, live torpedoes
cannot be fired at exercise submarines so that the attack-
to~kill transitions cannot be directly observed, Data from
other sources, such as simulation, may have to be used in
estimating some transition probabilities.

¢ The individual conditional probability estimates may be
studied, analyzed, or estimated as a function of parameters
of the mission/environment.
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IV MARKOV AND SEMI-MARKOV MODELS IN ASW EFFECTIVENESS ANALYSIS

A, Introduction

In the previous section, conditional probability models were dis-
cussed and analyzed, and it was pointed out that a conditional probability
model can be considered a special case of a Markov model. Moreover, some
of the limitations on conditional probability models can be removed by

considering more general Markov models,

In this section, some additional general reasons for considering
Markov (and semi-Markov) models for ASW effectiveness analysis are first
given in outline form, Following this is a discussion of the measures of
effectiveness that a Markov model may estimate, Finally, the steps en-
tailed in formulating and using a Markov model and in incorporating one
or more of these measures of effectiveness are briefly discussed. Later
sections in the report deal more fully with model formulation and parameter

estimation.

B. Useful Properties of Markov Models

In addition to removing some of the limitations on conditional proba-
bility models, the reasons for considering Markov models in ASW effective-

ness analysis are:

e Markov models are general and flexible in the following ways.

- Many, perhaps most, measures of effectiveness used in naval
warfare studies and analyses can be formulated in terms of
an appropriate Markov model. (Conditional probability
models are a special case of a Markov model.) New measures
of effectiveness can also be formulated that may be useful
where effectiveness has remained elusive,
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- Markov models can be used at various levels, ranging from
one-on-one engagements/encounters to the task force level,

- Markov models offer a way to combine data from diverse
sources in a single model. Measures of effectiveness at
various levels can all be introduced into a single model.

e Markov models are fundamentally dynamic in nature, but the
dynamic and static aspects conveniently factor to allow the
dynamic aspects to be analyzed separately. Shifting from
static to dynamic modeling presents new opportunities to
exploit operational data that are currently not used in
effectiveness modeling,

¢ For certain of the measures of effectiveness, Markov models
show a remarkable insensitivity to the actual nature of
the underlying random process, That is, they are very
"robust" in the statistical sense,

e Markov models are computationally convenient,

- Analytical (closed-form) solutions can be found for small
models,

- Systematic computational procedures exist for determining
.all of the reasonable measures of effectiveness commonly
used for Markov models of any reasonable size.

- Many dynamic properties of the model can be routinely
calculated.

s Many systematic methods exist for estimating Markov model
parameters from observed data, Several of these methods
employ data not ordinarily used in ASW effectiveness
modeling,

¢ Markov models may be useful for comparing dissimilar models
and for validating simulation models,

C. Measures of Effectiveness

Four principal measures of ASW mission effectiveness will be con-
sidered in this report. All of these measures can be defined in terms
of a Markov process, Many, or perhaps most, measures of effectiveness

commonly used in naval warfare analysis studies are one of these measures,
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Probability of Mission Success--In this first measure of effective-

ness, success must be suitably defined for the mission being considered.
Classical conditional probability models used in ASW analysis are of this
type, where success often means kill of the enemy submarine, In other
contexts, success may be simply detection of the enemy submarine, or de-
tection and classification of the enemy submarine. This measure is funda-

mentally a static measure,

To incorporate this measure into a Markov model, a state labeled
Success must be introduced and made an absorbing (trapping) state. The
probability of success will then be the probability of the process being
absorbed in the success state. This probability depends on the static

<

structure of the Markov process rather than on its dynamics.

Mean Time to Success (or Mean Time to Fail)--In this second measure

of effectiveness, for example, an aircraft carrier in the objective area
may be considered to fail in its mission when an enemy submarine detects
it, The mean time to detection of the carrier is an appropriate measure

for many studies,

In Markov process terms, the success (or fail) state is required as
above, and success/fail are again made absorbing statés. Methods for
calculating the mean time to absorption in a designated trapping state
are available from Markov theory. The dynamics of the Markov model are

entailed in the calculation of this measure.

Probability of Success (or Fail) at or by a Specified Time--In this

third measure of effectiveness, if an aircraft carrier can be considered
to succeed in its mission after no detection for (say) ten days, then the

chosen measure of effectiveness may be

P(carrier is not detected in ten days) .
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Again the Markov formulation requires appropriately defined success/

fail states that are absorbing states. The measure becomes

P(process is not absorbed in the fail state by time T)

where T is the specified duration. This measure again depends on the

dynamics of the Markov model.

Probability of Occupying a Designated State at a Randomly Chosen

Instant of Time--This fourth measure of effectiveness is appropriate in

situations where mission success cannot be identified with an absorbing

state, as in a trailing mission.

In contrast to the Markov formulations of the preceding three
measures, this measure is defined in terms of the steady-state (as opposed
to transient) properties of the Markov process, The measure again depends

on the dynamics of the process,

The first of these measures is a static measure and the other three
are dynamic; However, the static measure is imbedded within the dynamic
Markov model so that all are computable from a single dynamic model, 1In
many contexts, the first three measures may all be incorporated within a

singie Markov model,

When a Markov model is applied to a real naval operational problem,
the assumptions required for a Markov model will seldom, if ever, be
exactly fulfilled, The four measures vary markedly in their sensitivity
to the underlying assumptions, however, The probability of success
measure is singularly insensitive to the actual nature of the process
being modeled., The second measure, the mean time to success (or fail),
is also very ''robust.” The reasons for this insensitivity (robustness)
are discussed in detail in Section VII. The last two measures, the

probability of not failing by time T and the probability of occupying a
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designated state at a randomly chosen point in time, depend much more
heavily on the assumptions required for a Markov process, Both measures,
it should be noted, are special cases of the probability of occupying a
state at an arbitrary time t. For this reason, most of the experimental
work discussed later in the report has been devoted to finding methods
for restructuring the state space and estimating the model parameters to

obtain satisfactory estimates of P(state) as a function of time t,

D. Formulating a Markov Model

1. Definiqg a Set of States

A Markov model basically consists of a set of states and rules
for determining how transitions will occur between states., In applica-
tions to ASW effectiveness analysis, the most basic and probably the most
difficult step will be defining the set of states, How the states are
defined will generally depend on which of the four measures of effective-
ness is being considered, A goal would be to find a single set of states

that is adequate for all four measures.

In Markov theory, a state essentially describes a possible con-
dition of the process being modeled. All possible conditions must be
anticipated and states defined acco;dingly; at any instant of time, the
Markov process must be in some state but not be in more than one state,
In operational terms, the states must be defined so that the state can be
determined for each point in time when what actually transpired during
the ASW operation (or exercise) is known, Thus, from the definition of
the set of states and suitable information about the exercise (say from
the analysis report), a sequence of states can be determined that repre-
sents that exercise, This sequence, together with the times at which

transitions between states were made, will often comprise the basic data

for estimating the parameters of a Markov model,
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A special feature of many of the Markov models considered in
this report is that the process starts in a single state that can be
designated the starting state, For the first three measures of effec-
tiveness, there must also be a set of terminal (absorbing) states; often,
the states of success and fail will suffice. In ASW operations, a natural

starting state is often either search or detection opportunity.

2, Example of a Set of States

The conditional probability model (WSE model) discussed in the
previous section had states denoted opportunity, detect, classify,
attack, kill, and fail, The process makes a transition from opportunity
to detect when detection occurs, and the state remains detect until
classification (i.e.,, the classify state is entered) or failure occurs.
The terminology can sometimes be misleading: note that to be in the de-
tect state means that detection has occurred but neither classification

nor failure has yet occurred.

The critical part of the definition that is impossible to
satisfy in practice is the requirement that knowledge of the state alone
determines how the transition to the next state shall be made, More
specifically, the requirement is that all transitions shall be made at
random by consulting a set of transition probabilities associated with
the state being occupied. Emphatically, because transitions out of a
designated state will sometimes be made to one state and sometimes to
another in no way implies that the transitions can be adequately described
by a set of probabilities associated with the occupied state, That is,
not all transition behavior, even apparently random behavior, can be

described by a Markov model,

Later sections of this report deal with the problem of formu-

lating a Markov model for a stochastic process whose states do not
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satisfy the Markov property. Various attempts are made to restructure
the state space by adding auxiliary states so that the new set of states

more nearly satisfies the Markov requirements,

3, Estimation of Markov Model Parameters

When a satisfactory set of states has been found, with or with-
out the aid of chi-squared "goodness of fit' tests, the next step is to
estimate the model parameters from the available data. Since all the
measures of effectiveness can be calculated in terms of the model param—
eters, the model construction is then complete, Parameter estimation is
covered in more detail in Section VI, and the calculation of the measures

of effectiveness from estimated parameters are detailed in Section V.

A major part of this report concerns the methods for estimating
the parameters in a Markov model defined to determine one or more of the
measures of effectiveness listed above, The methods must assume observable
data from fleet operations and exercises as their basic inputs. The ob-
seérvable data need not be limited to that conventionally used in static
models such as conditional probability models, however. Indeed, one of
the principal benefits of a change from static to dynamic modeling may
be that potentially more data are available from operations and exercises

with which to construct and validate effectiveness models.

The parameters of a conditional probability model are usually
estimated from transition data; that is, from counts of the observed
numbers of transitions between the states of the model., Additional

potential data available for estimating the parameters of a dynamic

Markov model include such quantities as the:

¢ Average time each state is occupied.

¢ Average time of the first entry into each state,




e Average length of time spent in each state i before
its transit to another state j.

e Mean time to absorption in designated absorbing states,
e Probability of occupying each state as a function of
time,

In more sophisticated applications, the variances of these various times
may be used as well as the mean values, The equations relating many of
these quantitiés to basic parameters of the process are linear and thus
imply that suitably modified least squares methods can be used to esti-
mate the basic parameters when the equations are inverted, Since three
of the four principal measures entail the estimation of the probability
of occupying a state as a function of time, special emphasis has been
placed on methods for estimating parameters to make P(state) as a func-

tion of time adequately fit the observed data.

The complementary side of the shift from static to dynamic
modeling is also important, A dynamic model with its parameters can be
used to predict properties of the system or operation being modeled,
These predictions can then be compared with observed data to determine
the adequacy of the model and to suggest changes in model structure or
parameters, Static models are more limited in this respect; with less

structure in the model, fewer predictions can be made.
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V. BASIC MARKOV CHAIN THEORY

In this section, the basic concepts of Markov chains are summarized
and formulas are derived for computing several measures of effectiveness
when the basic parameters (the transition probabilities) of the Markov
chain are known. The development here is algebraic and uses matrix nota-
tion and operations for brevity and compactness, Other derivations,
often carried out using flowgraph methods, are given‘as needed in later
sections. A single example of a Markov chain with two transient states

and two absorbing states follows the theoretical development.

A, States, Transitions, Paths, and Loops

The principal elements of a Markov chain (the simplest Markov
process) are a set of states and a set of transitions between states,
A state is basically the description of a possible condition of a system
and the selection of a set of states is a crucial and often difficult
task in applications., In this section, the states are simply designated

by integers 1, 2, ..., N,

States must be defined so that the system being modeled is in one
and only oﬁe of the states at any given time. For a Markov chain, the
transitions between states (changes of state) are defined at integer
times n =1, 2, 3, .... By convention, the process starts in some state
(usually generically designated as state i) at time n = O and makes its

first transition to a state j at time n = 1,

The Markov chains of interest here have one or more absorbing states
which are states that are never left once they are entered, Entry into

an absorbing state is associated in applications with the end of the
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process since nothing of interest happens afterward. Absorbing states
in this report are generally defined by mission success (the success
state)/mission failure (the fail state)., Other states are transient
states by definition, Eventually, if the process continues long enough,

some absorbing state will be entered to end the process,

A transition diagram may be constructed for any Markov chain. It
consists of nodes representing the states and branches (or arcs) that
represent possible transitions, Figure 5.1 shows an example with four
states--two are transient and two are absorbing. For concreteness,

states 1 and 2--the transient states--may be identified with a surface

SEARCH 1 3 FAILURE TO DETECT SUBMARINE
PROSECIETE 2 4 DETECT SUBMARINE
FALSE CONTACT o

FIGURE 5.1 TRANSITION DIAGRAM FOR FOUR-STATE MARKOV CHAIN

ship searching for a submarine and prosecuting a false contact, The
success state (state 4) may represent detection of a submarine; corre-
spondingly, the failure state (state 3) may be associated with failure
to detect. As shown by the diagram, transitions take place between
states 1 and 2 as the ship first searches, then prosecutes a false con-
tact, then returns to search and so on., Transitions from a state to

itself (self-transitions) represent waiting times or holding times in a

state; the branches on the diagram showing self-transitions are called

self-loops. A path from one state to another consists of a sequence of
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branches from one state to another and may be of various lengths, A
path from a state back to itself without visiting any state more than
once is called a loop. Thus the path from state 1 to state 2 and back

to state 1 is a 1loop.

B. Transition Probabilities

Transitions are made from state to state in accordance with a set of

transition probabilities that are the only numerical parameters of a

Markov chain., One probability is defined for each branch of the transi-
tion diagram because the lack of a branch implicitly means that the corre-
sponding transition probability is zero, These probabilities may be
arranged in matrix form, with the rows being associated with the transi-
tions out of a state and the columns being associated with transitions
into a state. 1In a stationary Markov chain, the transition probabilities

do not depend on time and are denoted by p. . The formal definition is:
1)

p.. = P (state at time n is j|state at time n - 1 is i) for
i
J all states i, j and all times n =0, 1, 2, ....

C. Partitioned Form of the Transition Matrix

The transition matrix for the Markov chain in Figure 5.1 is denoted
by P, with elements p.j. It can be partitioned according to transient
i
and absorbing states and the resulting submatrices denoted by Q, R, and

the identity matrix I. That is,

_ ' - _
R
P11 Pia ! P13 Py Q
|
Por Pog i Pgz Py
P = |- -2 B S = (5.1)
0 o | 1 0 o I
[
K o , O 1 | L |
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where the submatrices Q and R are defined by

Q = R = (502)

and I is a 2 X 2 identity matrix.

In general, Q is a square matrix of dimension r, where r is the
number of transient states, Matrix R has r rows and a columns (i.e.,
it is dimensioned r X a), where a is the number of absorbing states,
The identity is dimensioned a X a, It should be noted that rows of P
are associated with the state occupied before a transition, and columns
of P with the state to which the transition is made, Thus, the submatrix
Q is associated with transitions from transient states to transient
states, and the submatrix R with transitions from transient states to
absorbing states, The identity matrix I is associated with the transi-
tions from absorbing states to absorbing states. Since absorbing states
are defined as states that are never left once they are entered, the

probabilities are unity on the diagonal and zero off the diagonal.

D. Multistep Transition Matrices and Absorption Probabilities

The transition matrix P defines transition probabilities for single
transitions, If P is multiplied by itself, the transition matrix for
two consecutive transitions is obtained with elements denoted by a super-
script "2" to denote the number of consecutive transitions.

P2 - (pfz,’)) . (5.3)
i

If the matrix multiplication is carried out in using the partitioned

form on the right side of Eq. (5.1), the result is expressible in terms
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of the submatrices of P which have the same dimensions as the original
partitioning., Equation (5.4) gives the result:

Mo
| Q (I + QR

P = . (5.4)
0 1

In the example,both identity matrices 1 are of dimension 2; in general

the dimensions differ.

Successive multiplication of P by itself yields transition matrices
for larger numbers of consecutive transitions. The n-step transition

n .
matrix P is readily shown to have the partitioned structure shown in

Eq. (5.5).

2 n-1
n Q (I +Q+Q + ... +Q )R (n)
P = = (p,, ) . (5.5)
0 1 +

This form reveals the process dynamics, The submatrix Qn represents
those series of n transitions that remain in transient states for all n
transitions, In cases of interest in this report, the process will al-
ways be absorbed in an absorbing state so that all elements of Qn will

approach zero as the number of transitions n becomes infinite,

The other submatrix associated with starting the process in transient
2 n-1 '
states is (I +Q +Q + ... +Q JR., Multiplying in the R and expanding

into its component terms gives Eq. (5.6).

2 3 n-1
R+QR+QR+QR+ ... +Q R . (5.6)

The first term, R, represents those cases where absorption occurs on the

first transition, The second term, QR, represents transitions that
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remained in the transient states for one transition and were absorbed on
the second transition. Later terms represent absorption after some number
of transitions from the starting transient state to other transient
states, followed by absorptions. In general, QkR corresponds to absorp-
tion on the (k + 1)St transition-~the first k transitions were between

. st
transient states and the (k + 1) transition to an absorbing state.

By means entirely analogous to those used to sum a geometric series,
-1
the limit of the sum in Eq. (5.6) can be shown to be (I - Q) R, [The

necessary auxiliary formula is shown in Eq. (5.7):

I+Q+Q°+ ... +Q%+ ... =ZQ“=(I—Q)'1 gd 6.
=0

Therefore, the "infinite step' transition matrix, which is the limit -of

Eq. (5.5) as n becomes infinite, has the form shown in Eq. (5.8).

-1
0] (I -Q) R
n
lim P =P = (5.8)

Only the last a columns associated with absorbing states have nonzero
entries, In particular, the submatrix (I - Q)—lR gives the absorption
probabilities for all starting states. That is, the (i,k)th element of
(1 - Q)—lR is the probabiiity of being absorbed in the kth absorbing

state, given that the process started in state i at time zero,

This result is usually obtained by setting up a system of simul-
taneous linear equations in the unknown absorption probabilities.* It
-1
will be convenient to denote the matrix (I - Q) R by A, with elements

a. .
ik
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En

z Transforms

Many quantities besides the absorption probabilities a,k just found
i

by matrix multiplication can be obtained by using z transforms that are

also called geometric transforms., The z transform is analogous to the

Laplace transform but is easier to grasp intuitively because the variable

7z is associated with the number of transitions made between states,

Some additional notation is needed at this point, Let the matrix

3(n) be the matrix whose elements ¢  (n) are the probabilities of oc-
1]

cupying state j after n transitions (i.e., at time n) when the process

started in state i at time n = 0, Let S(n) be the state at time n,

Equation (5.9) defines &(n), and Eq., (5.10) relates $(n) to the transi-

tion matrix P.

3(n) = PIS(n) = j|S(o) = i] = Ebij(n):l (5.9)

8(n) = P" = (pS?)) . (5.10)
1]

The z transform of a sequence of quantities [f(n)], which may be

Scalars or matrices, is defined to be the infinite sum

o©
n
f(z) = E f(n)z . (5.11)
n=0
Applying this to the sequence of matrices &(0), &(1), &(2), ... and using

Eq,

(5.11) results in Eq. (5.12),.

o] o

5(z) = z S(n)z" = :E: p" . (5.12)

n=0 n=0
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Using the general relationship in Eq. (5.7) after replacing Q by Pz re-

sults in Eq. (5.13).
-1
®(z) = (1 - Pz) . (5.13)

Each element ¢ (z) of the matrix in Eq. (5.13) is a function of z
ij

called the transmission from state i to state j. From Eq. (5.7), the

th .
(i,3) element has the form shown in Eq. (5.14) when states i and j are

distinct.
2) 2 3) 3
o (z) =p, .z + pf_)z + p?_)z + ... . (5.14)
ij 1] 1] 1]
F. Inversion of the Matrix (I - Pz) and Applications

By the use of the partitioning shown in Eq, (5.1), the matrix I - Pz

can be written in the form of Eq. (5.15),

I - Qz ~Rz
I - Pz = . (5.15)
0 I(1 - 2)

The inverse of I - Pz is easily verified by direct matrix multiplication
to be the matrix shown in Eq. (5.16).

[~ I
1 (1 - Qz) 'Rz

(I - Qz)

(1 - Py~ Y = ) (5.16)

Each of the matrices in the top row is useful for deriving formulas for

calculating effectiveness measures, It should be noted that the
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n -1 n
coefficient of z in the expansion of (I - Qz) is the matrix Q@ that

occupies this same position in Eq. (5.5).

n
Similarly, the coefficient of z in the expansion of

(1 - Qz)—le
I -z

found in the upper right position is (I + Q + Q2 + ... F Qn—l)R, which
occupied this same position in Eq. (5.5). The (1 - z) term appearing

in the denominator of Eq. (5.16) has the function of accumulating the
probabilities in the absorption states., When this factor is ignored and
z is set equal to unity, the upper right hand matrix reduces to

(1 - Q)—lR = A, the matrix of absorption probabilities found earlier in

Eq. (5.8).

-1
The elements of the submatrix (I - Q) that keeps recurring are
th
also meaningful quantities: the (i, j) element is the mean number of
entries into a transient state j before absorption occurs, given that the

process is started in state 1i.

-1
To show this, let (I - Q) be denoted by T, with elements t _,

ij’
Define random variables x_ . (n) and e , by
ij ij
1 if S(n) = j
x, (1) = (5.17)
1
J 0 if S(n) # j
o o)
e‘ .= X, (n) (5.18)
ij :E: ij
n=0

where the subscript i again indicates that the process starts in state

i at time n = 0. ¥From Eq. (5.18), the mean value of eij is
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e . = E X .(n) ) (5.19)
1] 1]

n=0

Because x,j(n) has only two values (unity and zero), its mean is
i :

x_(n) =1+ P[S(n) = j|S(0) = 1] + 0 - P[S(n) # j|S(0) = 1]

1]

o (n) = p.
ij ij

(5.20)

Therefore, the mean number of entries into a transient state j before

absorption (eij) is

e z , ™ Lt (5.21)
ij 1) 1]

n=0

by Eq. (5.14) with z = 1 and the definition of tij.

th
If the process is truncated after the M step (instead of being
allowed to continue until absorption occurs), the mean number of entries

into j before absorption or truncation is

M M ® @

OIS D CIED BN DN DI NI CR
1) 1] 1) 1) 1]
n=0 n=0 n=0 n=M+1
Thus, E;;(M) is seen to be the i,jth element of the matrix
((-dNa-o7-a-07-dMa-o™
-1 M+1 M+2
=(1I -Q) - (Q + Q + ...) . (5.23)

Truncation at M is therefore accomplished by premultiplying the funda-

. -1 " . " M+1
mental matrix (I - Q) = by a correction factor I - Q .
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In the untruncated case, the average number of transitions bhefore
absorption when the process starts in state i can be denoted by E;. Its

value is obtained by summing over all r transient states
e, = t, for i =1, 2, ..., r . (5.24)

In applications later, the mean number of entries into state j will
be associated with the mean time spent in state j before absorption,
i,e,, before the end of the exercise, One parameter estimation method
will be developed by using a matrix T whose elements are the average
total time spent in each of the transient states during the exercise,
For calculation of a useful effectiveness measure, however, a different
mean time is needed: the mean time until absorption, given that absorp-
tion occurs in state k, This quantity €(i,k) is also calculated from

. -1
the elements in the partitioned form of (I - Pz) but is somewhat more

difficult to derive,

G. Probability Generating Functions

Returning to the z transform of the one-dimensional sequence f(0),
£(1), £(2), ..., we can interpret f(n) as the probability that an integer-
valued random variable X assumes the value n, This transform, known as

the probability generating function of the random variable X, is defined

by

(z) = E £(n)z" =Z P(X = n)z" (5.25)
n=

n=0

and can then be differentiated with respect to z to obtain

£/(z) = E nf(n)zn—l = E nP(X = n)zn—l . (5.26)
n=0 n=0
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When z is set equal to unity, the result is the expected (mean) value
of X

2]

E(X) = £'(z =1) = E nP(X = n) . (5.27)
n=0
It will be necessary to know later that the second moment of X and
2
hence its variance (var X, or OX) can also be found by differentiating
f(z). Specifically, the second derivative evaluated at z = 1 equals

E(X2) - E(X)

2] © (o]

£7(z = 1) = E n(n - 1)P(X = n) = E n2P(X =n) - E nP(X = n)
n=0 n=0 n=0
2
= E(X ) - E(X) . (5.28)

Since the variance of X is defined as the mean of the square of X minus

the square of the mean of X, we have
2
var X = E(Xz) - E2(X) = [E(X ) - E(X)] + I:E(X) - E2(X)]
Stz =D+ (z =1 - [z = DI . (5.29)

In the matrix in Eq. (5.16), the individual elements of the sub-
matrix (I - Qz)_le/(l - z) are the generating functions of the cumula-
Elzg distribution of the number of transitions before absorption. Two
changes must be made to use these elements:

¢ The (1 -~ z) must be dropped because it accomplishes the

accumulation; dropping the (1 - z) leaves the conditional

probability generating function of the density function of
the number of transitions,

« The appropriate absorption probability ajk must be used to
divide what remains after the factor (1 - z) is dropped so
that the conditioning on absorption in state k is reflected.
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th -1
Algebraically, the (i,k) element of (I - Qz) "Rz divided by a,,m
1
th -1
the (i,k) element of (I -~ Q) R~-~is the probability generating function
of the number of transitions before absorption in k, given absorption in

k and starting state i. The first derivative of this generating function,

evaluated at z = 1, is the desired measure of effectiveness e(i,k).

Differentiation of the probability density function may be carried

out in matrix terms by using the'auxiliary formula
d -1 -1 -1
e (I - Qz) = (I - Qz) Q(I - Qz) . (5.30)
. . -1 .
Differentiating M(z) = (I - Qz) Rz as a product results in
d -1 -1 -1
I [M(z)]) = (I - Qz) Q(I - Qz) Rz + (I - Qz) R . (5.31)
When evaluated at z = 1, this expression reduces in a few simple steps to
d -1 -1
1 -QRel| _=(-@ [0-@TR|=m . (5.3
dz . z=1

The matrix on the right is therefore equal to the product of the funda-
-1
mental matrix T = (I - Q) and the absorption probability matrix
-1
A =(I - Q) 'R, both of which are elements in the top row of the parti-

-1
tioned form of (I - Pz) =~ in Eq. (5.16).

th —
The (i,k) element of Eq, (5,32), denoted by e(i,k), is the mean
time to absorption state k, given absorption in state k and starting

state 1 at n = 0

(i,k)thelement of (I - Q)—lr(l - Q)_lR]

(i x) =
eli, k) P(absorption in state k|starting state i)
N .
= t. .a, /a, . (5.32)
E ij jk ik
Jj=1
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The equation A = TR = (I - Q)—lR can be made quite intuitive when
tij is known to represent the average number of transitions into state j
before absorption, given starting state i. The product tijpjk is the
mean number of times that state k is entered from state j, given starting
state i. The sum over all transient states j corresponds to the inner
product of row i of T = (I - Q)-.l and the column of R that represents
state k. The value of the sum is the mean number of entries into state
k, given starting state i. Because a single trial is implicit in the

calculation of this mean, the absorption probability itself equals the

mean number of entries:
E(number of entries into k|starting state i) =
1 ¥ P(absorption in state k|start in state i)
4+ 0 X P(absorption in state other than k|start in state i)

*
This result is found by a different method.®

Another measure useful in soﬁe contexts is the probability of not
failing before a specified time. The (i,k)th element of
(1 +Q+ ... + QM-l)R is the probability of occupying absorption state
k at time M (i.e,, the probability of being absorbed in k at or before
time M). Therefore, the probability of not failing by time M is

p. (M)

£ 1 - P(absorption into the fail state f by M)
i

|

th M-1
1 -~ (i,f) element of (I +Q+ ... +Q )R . (5.33)

%k
Reference 5, Vol. I, Equation 4.1,117,
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Operationally this quantity may have an interpretation such as the
probability of surviving (or remaining undetected) for at least M time

intervals,

2 M
The sum I + Q +Q + ... + Q is easily shown to equal
M -1 —_—
(I -Q)(I -Q) , so that the measure p_f(M) also depends on the funda-
1

-1
mental matrix T = (I - Q) . Specifically
—_— th M -1
PLOD =1 - [(i,f) element of (1 - q >(1 - Q) R] . (5.34)
. M -1
The matrix (I - Q )(I - Q) has elements that represent the mean number
of entries into state j in the first M - 1 transitions; that is, the mean

: -1
number of entries matrix (I - Q) corrected for truncation at M,

H. Summary of Effectiveness Measures Derived

-1 -1
In summary, the submatrices T = (I - Q) and A = (I - Q) R found
-1
in the partitioned form of (I - Pz) [(Eq. (5.16)] have the following

uses and interpretation when the process starts in state i at time n = O:

» The elements a;, of A = (I - @ ~IR are the probabilities of
absorption in state k, as measures of effectiveness, they
are the probabilities of mission success. When premultiplied
by (I - QM), the elements are the probabilities of absorption
by time M; the (i,f)th element of the product is (1 - proba-
bility of the mission not failing by time M),

e The elements tij of T = (1 - Q)-1 are the mean number of
entries into a transient state j; they represent the mean
time spent iﬂ state j during the exercise. The sum

E t..
1]

j=1

is the mean time before absorption; operationally, this is
the mean duration of the exercise.
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¢ The (i,k)'! element of the product TA = {(I - @~ 1(1 - @~Ir}--
when divided by the corresponding element a5k of A--is the
mean time to absorb in state k, given absorption in state k.,
Operaticnally, these times are the mean time until mission

success (or failure) occurs, given that success (or failure)
occurs,

I, A Four-State Example

Four states, the allowed transitions between these states, and the

values of the transition probabilities p, 6 , are shown in Figure 5.2,
1

SEARCH FAILURE TO DETECT

PROSECUTE
FALSE CONTACT

4 DETECTION OF SUBMARINE

FIGURE 5.2 TRANSITION DIAGRAM WITH TRANSITION PROBABILITIES

The transition matrix is

105 | i\

4 8 | 16 1s

3 3 1 :

s 1|3 ol oo .

8 2 | 32 32

P = :( s (5.37)

0 o0 1 0 0 I

0 o 0 1}

where the submatrices Q and R are

74




-1
The fundamental matrix (I - Q) T is found by first calculating

(I - Q).

Inverting this matrix results in

a1-ot-=

Therefore, if the process starts in the search state the average
number of entries into the search state (before absorption) is 32/9 and
the average number of entries into the prosecute false contact state is
40/9. Since these are also the average lengths of time spent in the
respective states, the process spends more time prosecutiﬁg false con-
tacts than it does in seafching. The sum of the elements in the first
row (32/9 + 40/9 = 72/9 = 8) is the mean time until absorption, or the

mean duration of the exercise given that the exercise started in the

-1
search state. The absorption probability matrix (I - Q) R = A is

23 13

36 36
2 1
3

3




When starting in search, the probability of detection is 13/36 and
the probability of failing to detect is 23/16 since the second column
represents the absorption state 4 (detect), and the first row is asso-
ciated with starting in state 1 (search).

Conditional mean times to fail and detect are obtained from computing

1

= -1
(I - Q) (I -Q) R =TA and normalizing by dividing by the appropriate

absorption probability. The result is the matrix

1696 x 36 896 X 36

8,193 7.658

. 324 X 23 324 X 13

[8(i,k)] = , (5.42)
1704 X 3 888 X 3
—_— —_ 7.889 8,222
324 X 2 324

Reading from the first row to reflect starting in search (state 1)

results in

€(1,3) = mean time to fail given that failure

ultimately occﬁrs = 8,193
(5.43)

€(1,4) = mean time to detect given that detection

ultimately occurs = 7.658

As a check, one may verify that the weighted sum of these conditional
mean times--where the weights are the corresponding absorption probabili-
ties--equals the mean duration of the exercise.
The probabilities of fail and success at time M are more difficult
th

to obtain numerically because the matrix Q must be raised to the M

4
power, Choosing M = 4 arbitrarily and calculating Q gives
i 4 0.220 0.366
Q =Q = ( ) . (5.44)
0,220 0,366
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The probability of detect by time M = 4 is therefore 0,160 and the proba-

bility of fail by that time is 0,254,

The imbedded chain corresponding to Figure 5.2 is shown in Figure
5.3 and was obtained from Figure 5.2 by removing the self-transitions at

states 1 and 2 and normalizing the remaining transition probabilities to

|-

SEARCH

3 FAILURE TO DETECT

S
6

PROSECUTE
FALSE CONTACT

4 ) DETECTION OF SUBMARINE

p2
16
FIGURE 5.3 |IMBEDDED CHAIN FOR FIGURE 5.2

other states. Transition probabilities pf_ now have a different meaning.
1]

They are conditioned on leaving state i:
p/. = P[S(n+ 1) = j|S(n) =1 and S(n + 1) # i]
1]

for i =1, 2, and all j .

The transition probability matrix for the imbedded chain P’ is
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-1
(I - Q") works out to be

so that the mean number of entries into states 1 and 2 are 24/9 and 20/9,
respectively, In terms of the original chain, 24/9 is the mean number of
searches before absorption and the mean number of false contact prosecu-
tions, respectively. Since the average time in the search state per
entry into search is 1/(1 - 1/4) = 4/3, the average time in search before

absorption is

24
(mean number of searches) X (mean length of one search) = ry
which agrees with the mean time in search calculation performed above in

the original chain.

It can be easily verified that absorption probabilities are the same

for the imbedded chain as for the original chain, i.e.,

A= -e) R =a-oR=a




VI PARAMETER ESTIMATION FOR MARKOV PROCESSES

A, Introduction

Section V outlined Markov chain theory and derived matrix formulas
for calculating three measures of effectiveness: P(success); mean time
until mission failure, given that failure occurs; and P(fail does not
occur by a specified time M), All of these measures were calculated in

terms of the transition probabilities p_j.
1

In analytical models such as those in Ref, 6, the transition proba-
bilities are found by analytical means. However, for reasons indicated
in Section III-A, operational models are of more interest in this report
and require statistical methods to estimate parameters from operational
data. Several methods for estimating parameters are developed in this
section, assuming that the state space is given, Least squares and qua-
dratic programming methods are shown to be applicable in many situations,
Some of the parameter estimation methods are applied to artificial prob-

lems and to simulation in Sections IX, XI, and XII.

Weighting methods for combining two or more estimates of a parameter

are treated in Section XIII.

B. Factoring the Estimation Problem

In some applications, factoring the parameter estimation into two
problems is worth consideration. The first problem is to estimate the
parameters of the imbedded Markov chain, where this chain is found from
a given chain by removing all self-transitions and normalizing. Alge-
braically, the pii are set to zero for all transient states i, and the

other p. ., in the same row are divided by 1 - p_i so that the sum of the
ij i
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outgoing probabilities is unity:

i 1
J = (l - p.‘) = 1 for all transient states i .
1 -p, . 1-mp, . ii
i#j ii ii
The imbedded chain for the four-state example of Figure 5.2 was shown in

Figure 5,3 of Section V,

Note that transitions béfore absorption in the imbedded chain are
always to a different state. In this chain, the amount of time spent in
a transient state is not properly accounted for; hence, the correspondence
between state and time is lost, In particular, P(state) as a function
of time and.such quantities as mean times till absorption are generally
different from the corresponding quantities in the original chain. AHow—
ever, since transitions out of a state occur to other states in the same
ratio as in the original process, the absorption probabilities are iden-

tical to those in the original process.

Inasmuch as the time relationship is destroyed in the imbedded chain,
it is considered static in the same sense that a conditional probability
model is static. Putting the self-transitions back in makes the model
dynamic, Fortunately, the self-transitions can be added to the imbedded
chain without disturbing the static (transition) structure, which implies
that the static and dynamic aspects of the model can be studied and
analyzed somewhat independently. This separation of estimation into two
parts (imbedded chain and holding time) is used in later examples and

is explained in Subsection D,

C. Estimating Transition Probabilities

1. Using Transition Data (nj;)

In a true Markov context, the most desirable data for estimating

transition probabilities are counts of the number of transitions (ni_)
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from state i to state j for all states i and j. Transition counts may

be available for either the original or the imbedded Markov chain. In
the original chain, at least some of the n will be nonzero; but in the
imbedded chain, all nii are zero by definition. When the nij for the im~
bedded chain are given, the parameters %ij that are found will be for the

imbedded chain; other data must be used to estimate the p_i and to nor-
1

malize the p,J by multiplying -each by the factor p, . Let
1 11

n. . = observed number of transitions from state i to state j
1]

n, = E n, . = number of transitions out of state i .
1)

Then the quantity D. . is the optimal estimator for p,j in both
1) i

the maximum—-likelihood and minimum chi-squared sense:
n /n. for all i,j .when n, > O
0 otherwise

Obviously, each D,k lies in the closed interval (0,1). Also, by the
1)

definition of n,, the sum over j for a fixed i is always unity.
1

This estimator is entirely analogous to that used to estimate
the parameter p in a series of Bernoulli trials because it equals the
ratio of the number of successes to the number of trials. Furthermore,
ﬁij is easily shown to be unbiased (its expected value is pij) and to be
the minimum variance unbiased estimator.” With these properties, it is
unlikely that this estimator can be improved upon. The difficulty with
this estimator is primarily that considerable effort may be required to
determine the transition counts; currently, they are rarely given in

ASW exercise reports,
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Determination of the nij from an ASW exercise is simple in
principle, From the beginning of the exercise, the times when state
changes (transitions) occur are recorded with the corresponding transi-
tion times, Whenever it is known whether the process is Markov at the
outset, it is desirable to first represent the data in path form; that
is, first record the sequence of states entered from start until absorp-
tion, together with the times of transition. A sample path that starts
in state 1 and is absorbed in state 5 may be represented by two rows of
data--one row for the states entered and another for the transition times,

An example is the data
state sequence: 1 2 1 2 3 1 2 5
transition times: 0 5 6 8 9 11 12 14 .

An equivalent path form that can be used when transitions can

be assumed to occur at only integer times is the sequence

Reading from the left, the nth element of this sequence is the observed
state at time n, for n = 0, 1, ,.., i4., For theoretical purposes, the
second representation is preferable because all the information is shown
in transition form. In either case, the nij can readily be determined
from the path data by simply counting transitions. The matrix of n,

ij
for the single path shown above is shown in Table 6.1, A single 'one

1"
is shown for the 5-5 transition; this results in the desired estimate of

unity for state 5 that is assumed absorbing.

The transition counts for other paths may be accumulated in
the same n.J matrix, and one matrix for each path need not be recorded.
1

For example, if the data consist of three paths shown on the left for a
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i\ J 2 3 4 5 ni

1 3 0 0 0 8

2 1 1 0 1 4

3 0O 1 0 O 2

4 0 0 0 0]

5 0 0 0 1] (1)
five-state process with absorbing states 4 and 5,

TRANSITION COUNTS n_ |
ij

Table 6,1

shown on the right in Table 6.2,

TRANSITION COUNTS n_j
1

Table 6,2

FOR

FOR A SINGLE PATH

the matrix is that

THREE PATHS

Paths States i\ Jj 2 4 5 ni
1 1 1 1 2 3 5|1 2 1 0 6

2 1 2 2 3 1 42 1 0 0 4

3 2 3 3 1 3 4|3 0 1 1 S

4 0 1 0} (L)

5 0 0O 1}

When experimentation is needed to find a satisfactory set of

states,

variables may be selected from which states are to be defined;

it may be desirable to proceed differently.

First, a number of

these

values are recorded continuously by going through the exercise or sequence

of tactical events one time,

For a tentative definition of state space,

one can proceed through the list of these variables to determine when

83




changes of state occur and to record the transitions accordingly. When

the situation is complex, having a computer program compute the n_j from
i

lists of the auxiliary variables may be desirable, Suggestions about

variables to choose for defining states are made in Section IV-D-1,

2. Using Mean Time-in-~State Data (tij)

In some tactical situations in which state is defined, the
total time spent in each state is tabulated in the exercise report. An
example of this form of data is the tabulation of the total time the
Orange submarines are in the defined states for the recent series of
UPTIDE exercises, If the underlying process is Markovian (that is, if
these states are actually states in the Markovian sense) these data may
be used to estimate the transition probabilities in a Markov chain. Be-~
cause less data collection and data analysis effort should be required
to obtain the mean time~in~state data, developing a parameter estimation

method for these data is worthwhile,

At least two theoretical difficulties must be faced, however,
First, the theory requires the mean time data to be available for all
possible starting (transient) states. Second, only the transition proba-
bilities for the transient states can be determined so that additional
data are required for the calculation of absorption probabilities and

other quantities involving transitions into absorbing states,

The basis for the estimators is the theoretical expression given
in Section V that relates the transient portion (Q) of the transition
matrix (P) to the mean number of entries into each transient state before
absorption., The matrix equation given there was

T = (I - Q)_l (6.1)
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where the elements of T, denoted by t _,, were the mean numbers of transi-
1]
tions into transient states j before absorption, conditioned on the

process starting in state i,

The elements of Q are simply pij for transient states i and j.
When estimates of all the tij are given, we may denote the resulting
matrix by %, with entries %ij' When the starting state is always state
1 (as it is assumed to be in most of this report), the second and later
rows of T may possibly be filled in by using the same data used in the
first row after all data were removed before the first entry into state

i. (This method was used successfully on an example reported in Section

XII which may be consulted for details,)

The straightforward approach to estimating the elements of Q
in Eq. (6.1) would be simply to invert both sides and transpose elements
and thereby obtain a matrix Q whose elements are estimates of the transi-

tion probabilities p_j.
1
~ ""'1
Q=1-~- (D) . (6.2)

When a satisfactory fit is obtained, this simple method may be adequate.
However, possible difficulties include:

A

¢ T may not have an inverse, or may be very nearly
singular.

¢ Some elements of Q may be negative, or greater than
unity.

¢ Nonzero elements may result for some transitions known
to be physically impossible,
A procedure that circumvents the first and last difficulty may
be illustrated by an example, Suppose the T matrix is given for a process
with three transient states (designated 1, 2, 3) and two absorbing states.

On physical grounds, let us rule out transitions 1 - 1 and 2 - 3 so that
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the transient part of the transition matrix is of the form

0
P12 Py3
|
= 0
' @ =fPy Py
P3;  P3gz  Pgg
(here the carets (") are omitted for convenience). Thus, I - Q becomes
1 - -
P1a Py3
I - ={ - 1 - 0 . 6.3
Q Po1 = Pgy (6.3)
= - 1 -
P3 P3o P33
Equation (6,1) was
-1 *
T=(1I~-Q) . (6.4)

Premul tiplying each side of Eq. (6.4) by (I - Q) in Eq. (6.3) gives
-1
(I -QT =(I1 -QPI -Q ~ =1 , (6.5)
or by expansion and transposition
QT =T -1 . (6.6)
The matrix equation in Eq. (6.6) represents a set of nine
simultaneous linear equations in the seven unknown transition probabilities

for the allowed transitions, When (I - Q) has an inverse, solving Eq.

(6.6) is equivalent to solving this set of equations, which in expanded

form are:




t
11p31

t +
12P31

t P

+
13" 31

The equations in Eq.

braic sense,

t
21712

t, P

22712

t
23P12

t
11721

t
12P21

ty3P0

+ ot
21P32

t
22P32

t +
23P32

+ ot
31713

+ot
32P13

+t
33P13

+ ot
21 22

+
tooPos

+
ta3Pa0

+t
31P33

+
t32p33

ta3P33 7 33

(6.7)

(6.7) may or may not have a solution in the alge-

However, a least squares solution can always be found.

Equation (6.7) can be written in the form

Ap =D

(6.8)

where A is a 9 X 7 matrix, p is a 7 X 1 matrix (i.e., a column vector

with 7 components), and b is a 9 X 1 matrix.

chosen as the vector (p
notes transpose,

side of Eq. (6.7).

the zeroes reflecting the absence of all pij

first equation of Eq.

12’ P137 Poy’

(6.7).

p

The first row of A is then (t

22’ P31° P32’ P33
and b may be chosen as the column of values on the right

excepting p

Specifically, p may be

T
), where T de-

21) t31) O) O’ O’ O’ O),

in the

d
an¢ Pys

12

The modern approach to least squares proceeds directly from the

matrix form in Eq.

(6.8),

The sum of the squared deviations is
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[o))
H

(Ap - b) (Ap - b) = (pTAT - bT>(Ap - b)

R T T T T T T T T T
PAAp-pPAb-bAp+bb=pAAp-2bAp+bb . (6.9)

2
The derivative of the scalar d with respect to the vector p is then

found and set to zero:
T T
2A Ap - 2A b =20 . (6.10)
Solving this by inverting yields the unconstrained least-squares solution
. TY T
p={(aA)] AD . (6.11)

Nothing in this formulation constrains the unknowns p, 6 & to
1]
satisfy the probability constraints

3
p.. =0 , and E p.. <1 . (6.12)
ij 1]
j=1

If these constraints are badly violated, a quadratic programming formula-
tion may be used. Appendix D explains quadratic programming in more de-
tail, but here it need only be said that arbitrary linear inequality and®
equality constraints may be introduced; and in particular, the probability
constraints Eq. (6.12) can be added, The general form of a quadratic

program is: find a vector x to minimize
T
z = x Dx (6.12)

subject to constraints
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1
A x <
2* = Py
(6.13)
Axz=bhb
3 3
xz0
where D, Al’ A2, A3 are given matrices of constants; the bl’ b2, b3 are

given column vectors; and the scalar z (the sum of the squared deviations)

is to be minimized.

3. Using Mean First-Passage Times (mij)

When a set of states is defined for a class of tactical situa-
tions, it is possible to obtain transition probability estimates from data
on the time between the entry into one state and the entry into another,
To illustrate this, suppose that search, detect, and classify are states
in a Markov chain model. Then such quantities as the average time from
the beginning of search until detect (i,e., entry into the detect state),
the average time from the beginning of search until the time of entry
into classification, the average time from the entry of detection until
the entry of classification can be estimated from operational data, These
quantities may themselves be considered as dynamic measures of effective-
ness since they depend upon the dynamics of the ASW system or unit being
considered, For the current purpose, however, they are not considered as
end-products but as parameters required for the estimation of the four
measures of effectiveness considered earlier, All of these (end-product)
measures of effectiveness are calculated from the transition probabilities
in a Markov chain model so methods are necessary for estimating the transi-

tion probabilities from time-~-between-states information,
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In technical terms, a set of quantities of interest from which
transition probabilities may be estimated are called first-passage times,
The first-passage time from state i to state j is defined as the number
of transitions to arrive in state j, given that the state is i at time
zero, First-passage times are defined only for recurrent chains; that
is, for Markov chains all of whose states can be reached from any other
state, When all states do not communicate in this manner, a modified
definition entailing conditional first-passage times may be used; but this
results in very complex expressions, Therefore, the formulation given
here is for the case all states communicate; by definition, there are no
absorbing states, The measure of effectiveness appropriate to these
situations is the probability of occupying a designated state at a ran-
domly chosen time; this is appropriate, for example, for the trailing

mission.

Data requirements are a complete set of estimates of mean first
passage times (Eij), where '"complete' means all (i,j) combinations that
are physically and logically possible, As in the previous section, using
data from paths that all start in the same state may be possible by ig-
noring all transitions before the first entry into state i when data for

row i are being calculated,

A possible objection to the use of mean first passage time data
may be raised at this point, When the analysis required to obtain the
mean first-passage times is considered, it seems that paths must be traced
from each possible starting state (i) to the entry of an absorbing state
(k), and that this tracing would yield path information that can be trans-
lated into transition counts nij' Since methods are available'for esti-
mating the transition probabilities pij from the ni,, it then might be
asked whether the mean first-passage times contribute anything new to the

problem, The answer to this will depend on whether the process is actually
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Markovian, the measure of effectiveness, and what the "goodness of fit"
measure is for the model., In a true Markov context where only the ab-
sofption probabilities are desired, the transition information is suffi-
cient, However, if the model is realistically at least somewhat non-
Markovian and is also required to fit dynamically [in the P(state) as

a function of time sense] then the transition probabilities derived from

the mean first-passage times should give useful additional information.,

Equations relating the mean first passage times and transition
probabilities may be found in any standard text on Markov chains.®
Letting m.‘j be the mean first passage time from i to j and p. . be the

i ij

usual transition probability from i to j, the equations are

N

m“=1+E p..m . 1<i, j N . (6.14)
iJ iJ kJj

k=1

K j

. 2 . . . 2 s

This is a set of N 1linear equations in the N unknown transition proba-
bilities, 1In theory, with exact values of the mij known, there should be
a unique solution to this linear system that yields the transition proba-

bilities. The probabilities comprising the solution should automatically

satisfy the nonnegativity and row sum conditions

N

. E p.. =1 for i =1, 2, ,,., N . (6.15)
ij 1]
Jj=1

kel
\%
o

In applications, however, there are two reasons why straight-
forward solution of the set of linear equations in Eq., (6,14) will seldom
be possible, First, the model will rarely be exactly Markovian as re-
quired by the theory. Second, the amount of data is limited so that the
estimators mij will have noise components even in the Markovian case,
Three outcomes are possible when one attempts to solve the system in Eq,

(6.14).
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(1) The system of equations in Eq, (6.14) may have a solu-
tion with nonnegative P which also satisfies the row
conditions in Eq. (6.15),

(2) The system may have a solution with some Pj 5 outside
the range zero to unity, or the row conditions in Eq,
(6.15) may not be satisfied.

(3) The system may be inconsistent and hence have no
solution,
The last two outcomes are the result of the non-Markovian of the real
processor noise components in the estimators. Only the first outcome
gives an acceptable solution, but the second and third possibilities are

often to be expected in working with a real problem,

a. Constrained Least Squares

A first method for obtaining an acceptable set of estimates
from the set of equations of Eq. (6.14) will be through the application
of constrained least squares. This model is ordinary least squares aug-
mented by linear constraints on the unknown quantities. The constrained
least squares formulation follows, The solution always exists, but the

nonnegativity constraint may be violated.

First, the system in Eq. (6.14) is replaced by a single

quantity to be minimized:

N N N 2
a2 E E 1+ E (6.16)
= m - m - -
Pik"k; ij
izl j=1 =1
k#j

2
The quantity d 1is obviously nonnegative and the lowest possible value is
therefore zero in Eq. (6,16), The value zero is achieved as a minimum

if~-and only if--the set of equations in Eq. (6.14) is consistent. To
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ensure acceptability of the minimizing set of pij’ however, it is neces-
sary to add the row constraints of Eq. (6,15), The constrained least-

squares problem then takes the form of minimizing
2 . .
d by selecting pij (i,j =1, 2, ..., N) (6.17)

to satisfy

E pij =1 for i =1, 2, 3, ..., N . (6,.18)
J':

2
The double summation defining d can be rewritten in matrix form as

d2 = (Ap - b)T(Ap - b) (6.19)

when b is an observable random vector, pij is the unknown vector of tran-
sition probabilities, and A is a matrix of constants determined from the
m. .. The row constraints of Eq. (6.19) also can be written in matrix

1)
form as

Bp = k , (6.20)

where k is a known vector and B a known matrix, The solution to Eq.
(6.17) subject to Eq. (6.18) is then that given in Appendix D with the

covariance matrix V equal to the identity matrix

-1 -1
. T T T T R
P =p + [(A A) B ]I:B(A -A) B] (k - Bp (6,21)
where D is the solution to the unconstrained problem

P = (ATA> ATb . (6.22)




b. Quadratic Programming Solution

The constrained least squares formulation minimized a sum
of squares subject to linear constraints derived from the row constraints
that the sum of the transition probabilities out of each state should sum
to unity. Unfortunately, there is a possibility that some probabilities
may lie outside the range zero to unity while satisfying the row condi-

tions, When the nonnegativity constraints

>0 for i,j =1, 2, 3, ..., N (6.28)

P. .
1)
are also introduced, the result is a quadratic program to minimize

pDp+cp

subject to

(6.24)

where
p is the unknown vector of transition probabilities
b and ¢ are known constant vectors

D is a known matrix of constants which is symmetric and positive
semidefinite,.

4, Using the First and Second Moments of First-Passage Times

In addition to the mean first-passage timés (the first moments),

2
estimates of the second moments of first-passage time (s ) may also be
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available, For a Markov chain, the following relations hold when all

states communicate.®

N
; 2 1+ 2 i,j 1, 2 N (6.25)
S = - S = PR . .
ij = “Mij Z Pix%ij 1) > 4 )

k=1

k# j

This set of equations has nearly the same form as Eq, (6.14) in the pre-
vious section, and the sameé remarks apply concerning its solution. 1In
particular, a constrained least-squares approach may be taken to obtain
the estimators p. . when the estimates of the first and second moments

ﬁij and Eij are available, Since second moments are used as well as first

moments in the fitting process, the statistical properties of the esti-

mators can be expected to be at least somewhat improved.

5. Using P(State) as a Function of Time

Other data that may be available in ASW applications are esti-
mates of the probability of occupying each state as a function of time,
For a defined set of states with time origin at the beginning of the
engagement or exercise, the estimates of P(state) for a fixed t may be
from the ratios

Number of times state i was
occupied at time t
Number of times state i could have
been occupied at time t

plS(t) = il = y,(t) = (6.26)
for i =1, 2, ..., N, That is, yi(t) is proportional to the observed
number of times that state i was occupied at time t, the denominator
being the normalizing constant that makes the sum of the yi(t) equal
unity for each fixed t. Other ways of obtaining the estimates yi(t) may
be found more practical in some applications., In economics applications,
the yi(t) are often from such aggregated quantities as the relative pro-

portions of total sales for each competing firm in a particular market.
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Analogous quantities may be found in ASW, for example, by considering the
relative proportions of time a submarine spends in various information
states, Because deceptive tactics and decoys are used to force a sub-
marine into lower information states, this may be a way to study the im-
pact of particular tactics/decoys on transition probabilities and hence

on measures of effectiveness derived from these transition probabilities,

To proceed with the mathematical development, let the N state
process be observed from time t = O until time t = T. Let the given data
be
. (6.27)

yj(t) = pIS(t) = jl

Then the relationship between the unknown transition probabilities p_ .

1]
and the observed y (t) are
1

N

=1, 2, ..., N

y (t) = E y.(t - Dp, . +u_(t) J it ’ . (6.28)

ki st i ij J =1, 2, ..., T

1=

If the y (t) were the P[S(t) = j] from a true Markov process
J
with parameters pi" all the error terms u (t) would be zero. The approach
J J
will again be to apply least squares; a set of p,.  is sought to minimize
1]

the sum of the squared errors,

Vector and matrix notation is needed for compactness. Accord-

Aingly, let
v, = [yj(l), Y (2, yj(T)]T (6.29)
pj = (plj’ p2j’ e pNj)T (6.30)
wo= o, w@, uj(T)]T (6.31)
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-
yl(O) y2(0) e yN(O)

A = yl(t - 1) yz(t - 1) .o yN(t -1 (6.32)

yl(T - 1) yz(T - 1) . " yN(T - 1)

(note that Aj is actually independent of j). Then in partitioned (com-

ponent) form, the Eqs. (6.28) become

- “r-r 0 r -
A
Y1 R 1 P Y
= A . . .
y2 o . + u2 (6.33)
A
N L NP "]

Equations (6.33) can be written more compactly as
y =Ap +u . (6.34)

Conventional least squares can be applied: minimize the sum of the

squared deviations uTu by minimizing
uTu = (y - Ap)T(y - Ap) (6.33)
whose solution is the optimal estimator P

B = (ATA) 2y (6.36)

T
provied that A'A is nonsingular (which it is when Aj is of full rank).

97




It can be shown that the row sum conditions (¥ p, = 1 for all

j o
i) are automatically satisfied by P, but the P,  are not guaranteed to
1

lie between zero and unity.9

Estimates that restrict the transition probabilities to the
range (0,1) may also be developed. One again minimizes the scalar

quantity

2 T
d = (y - Ap) (y - Ap) , (6.37)

subject to the row constraints and p > 0. This is again a quadratic

program, soluble with a modified simplex algorithm,

The least-squares model is applied to the y (t) calculated from
1

an artificially constructed non-Markov process in Section XI.

D. Estimating the Density Function of the Transition Times

1, Introduction

In a Markov chain, the only parameters are the transition
probabilities pij; these determine the static (transition) and the
dynamic behavior of the process, As mentioned in Subsection B, the
diagonal terms (pii) determine the holding (or waiting) times in the
states and hence determine the dynamic behavior., It is often convenient
to estimate the pii after the off-diagonal pij is estimated by data from
the imbedded chain--that is, from data that depended only on transitions

made between different states.

This section begins by showing how to estimate the pii when the

other p, . and average-time-in-state data (T.) are available. The method
ij i

can be applied when it can be assumed that the holding time in a state is

geometrically distribdted and is independent of the state to which the
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transition is made, Since these conditions are often not satisfied in
applica%ions, methods are given that may be tried when the dynamic fit
obtained by using a Markov chain is unsatisfactory. Techniques of this
kind generally use auxiliary states to represent the transition time be-
tween selected pairs of states (i,j). When the density function of the
transition times is chosen to be the functional form hi.(n), the model
is called a semi-Markov model; some techniques for estimating the

parameters of these densities conclude the section.

2, The Holding Time Parameter (p;;)

In the discrete time Markov process (Markov chain), the transi-
tion probabilities determine both the static (transition) and dynamic be-
havior of the process, In particular, the density function of the time
spent in a state is geometrically distributed, independent of the destina-
tion state, Denoting the self-transition probability of state i by p,i,

i
the probability of making a transition to some other state at time n is
n-1 - - :
p.. (1 - p,..), because (n - 1) self-transitions (returns to state i) must
ii ii

first occur, followed by a transition to some other state, Therefore,

the average number of transitions required to leave state 1 is

[ o]
T, = E nP(state i is left on the n'" transition after entry)
n=1
[ee]
Dorry (Loey) = (mey) :
= 1 - = {1 - . = . (6.38)
RPyy Piy Pii 2~ 1-p. .
n=»1 1 - pii ii

The simplest possible estimation procedure to fit Markov chain
parameters to observed data on transitions in the imbedded Markov chain
and to observed average transition time data exploits this formula, When
the mean time (Ti) spent in each state is known or is estimated from

operational data, the optimal estimator ﬁii is found by solving Eq. (6.39)
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1

T, = 1/(1 - 5..) (6.39)
11
for the estimator p. . The result is
11

A

p.. =1-1T . (6.40)
ii i

After these estimates of the self-transitions (the diagonal elements of
the transition matrix P) have been determined, the estimates ﬁ;j for the
other (off-diagonal) transition probabilities for the imbedded process
can be normalized by multiplying each ﬁ;j by (1 - %ii)' The resulting
set of %ij (i,j = 1,A2, ««., N) are nonnegative, satisfy the row con-
straints for each i, and are therefore feasible estimates of the transi-
tion probabilities, This estimation procedure is used on sample problems
in Sections IX and XI. Based on these examples, when the actual model is
non-Markovian and this simple procedure is used without further modifica-

tions, a poor dynamic fit seems to be expected.

3. Adding Auxiliary Delay States

One possible way to improve the dynamic [P(state) as a function
of time] fit entails the addition of auxiliary states. This addition
does not influence the probabilities of transitions between the original

states, but does influence the times from one state to another.

If it is reasonable to assume that the waiting time density is
independent of the destination state, the natural approach is to increase
the number of parameters that characterize the waiting time density. The
obvious two parameters are the mean and variance of the waiting time. . (A
Markov chain waiting time density has only a single parameter (pii) that
determines both the mean waiting time and the variance of the waiting

time.) An approach that sometimes works is to add auxiliary delay states,
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say Di auxiliary states for state i, to give the resulting waiting time
density function the same sample mean and variance as the estimated waiting
time density., If m, is the (sample) mean waiting time in state i and v,

i i

is the corresponding variance, then the Di should be chosen to satisfy

D + ——=—— =nm. s D, = nonnegative intéger (6.41)
i

ko'd

ii
—_—_ v . (6.42)
A 2 i
(r-2,)
ii
Equation (6.41) was derived to fit the mean waiting time by
assuming that Di delay states (with a mean time of delay D ) are followed
i
by the original state i [with mean time 1/(1 - ﬁ'i)]' Equation (6.42),
i
derived to match the variances, does not involve D, since the delaying
i
transitions always occur and do not involve the variance. Solving Eq,
(6.42) for D, , the estimator of p, . , gives
ii ii
- -1 -2
(2 + vi ) + 4v + v,

e = 6.43
pii 2 ¢ )

for the appropriate choice of sign before the radical. Using this value

of p.. in Eq. (6,41) and solving for the number of delay states Di’
. ii
D =m, - —F—— . (6.44)

If the computed value of Di is negative, this method will not work, In
any case, rounding to an integer is generally necessary and results in
some error in fit in the mean time, The fit to the observed mean time
is usually more important than the fit to the observed variance, The
rounded Di may now be used to determine a new ﬁii from Eq. (6,41). Then

the error in variance may be calculated from Eq. (6.,42); if the error is
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not excessive, these modified estimates of p.. and D, may be used in the
11 1

modified Markov chain model with D, auxiliary states.
i

A numerical comparison between the original simple estimating
method and the auxiliary delay states method can be found in Section IX,
A considerable improvement resulted from the addition of delay states in

this example,

4, Adding Auxiliary States and Transitions

The delay method described in the last subsection was systematic,
simple, and permitted the matching of two parameters to an observed or
theoretical holding time density function, The method does not always
work, however, and in any case the auxiliary delay states are not used
efficiently, This inefficiency results from the simple form of the tran-
sitions among the delay states, for each delay state merely "holds' the
process in state i for one more transition, When the fullest possible
set of transitions are allowed between the auxiliary states, we may ex-
pect to use the given number of states more efficiently by selecting
parameters to approximate given holding time densities, This is the

approach taken in this section.

An example is used to illustrate the approach. Figure 6.1
shows an example in which three auxiliary states (i’, i”, i”) and the
indicated transitions allowed between them have been added to represent

a holding time density h (n), where h (n) = P (process makes a transition
i i

out of state i at time n/state i was entered at time zero),

For definiteness, suppose that all the conditional transition

probabilities c-j (conditioned on a state change from i to j) are given.
i i

These c¢_. . are determined from the usual transition probabilities pij by

13
normalizing over the transitions out of state i
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cij = pij/ E pik for j =1, 2, ..., i-1, i+1, ..., N .
k=1
K#i

All inputs to state i (the original state) are sent to state i', and

/s P/
states i° and i

are placed between i’ and i as shown, with transition
probabilities for all auxiliary branches being indicated by ai in the
diagram. The overall transition structure of the process is readily
seen to be unchanged because the transitions from i to any other state j
occur with the correct probability ci_. The structure of the network

of auxiliary states and transitions added to the original process deter-

mine the density of the waiting time.

Ten new parameters (a1 through alo) are shown on the diagram,

However, the linear (row) constraints

a +a +a =1
1 2 3
+ + =1 6.4
a, a5 a6 ( 5)
=1

a +a +a + a
8

reduce the number of free parameters to seven. By allowing these ten
parameters to vary subject to the three row constraints and the usual
nonnegativity conditions (ai > 0, we may expect to realize a variety of
shapes for the waiting time density. Several examples of densities are

shown in Figure 6,2 for the parameter sets detailed on the figure.

Analytically, it is straightforward to determine the probability
generating function g (z) ‘of the waiting time density. The transmission
i

from state i’ to state i is g (z).
i

From Mason's formula in Appendix C, the graph determinant A of

the auxiliary network is
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2
=1 + -a_ =~ a, - a + 2z (aa +aa +aa + a a_ + a.a
b z< 1~ % 7) ( 2% T %68 T 1% T %1% T Yy 7)

2 3
l + Az + Bz + Cz . (6,46)

it

3
+ -a a - a a - a - a. a
z ( 2%6% T 21%% T #2%5% T Y4 7)

The numerator of the transmission is

2
1 - - - 1~ + 1 - - - )
a3< % " % a9)( a4)z azas( % 7 % ag)z

.09
[ [ | | | | | [
PARAMETER ARRAY [ a, a, aj
.08 y—{\ ag ag ag 0 —
\ 83 8g 8; 949
I
07 H| | ]
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FIGURE 6.2 DENSITY FUNCTION OF WAITING TIME IN STATE i
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Létting A, B, and C be the constants in the graph determinant as in Eq.

(6.46), the transmission g(z) is then the ratio

2
[a (1 - a )z + a a z ][} - a =-a - aé]
3 4 2 6 7 8
2

3
1 + Az + Bz + Cz

gi(z) = . (6.47)
Expanding g (z) in an infinite series in the variable z gives the density
1
n
of the waiting time with the coefficient of z equalling the probability
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